The base of an isosceles triangle is 20 cm and the altitude is increasing at the rate of 1 cm/min. At what rate is the base angle increasing when the area is 100 cm2?(adsbygoogle = window.adsbygoogle || []).push({});

I wasnt really sure where to start on this question so i tried my best at an answer. i'm sure i've gone wrong with this question so i appreciate any guidance.

the isosceles triangle divides into two right triangles with bases of 10 cm and areas 50 cm2

tan[tex]\theta[/tex] = [tex]\frac{h}{10}[/tex]

[tex]\frac{d\theta}{dt}[/tex] sec[tex]^{2}[/tex] [tex]\theta[/tex] = [tex]\frac{1}{10}[/tex]

[tex]\frac{d\theta}{dt}[/tex] = [tex]\frac{1}{10}[/tex]. cos [tex]^{2}[/tex] [tex]\theta[/tex]

A = [tex]\frac{1}{2}[/tex] b x h

50 = [tex]\frac{1}{2}[/tex] (10) . h

h = 10

tan [tex]\theta[/tex] = [tex]\frac{10}{10}[/tex]

tan [tex]\theta[/tex] = 1

we know,

sin[tex]^{2}[/tex] [tex]\theta[/tex] + cos[tex]^{2}[/tex] [tex]\theta[/tex] = 1

(cos[tex]\theta[/tex] tan [tex]\theta[/tex]) [tex]^{2}[/tex] + cos [tex]^{2}[/tex] [tex]\theta[/tex] = 1

2 cos[tex]^{2}[/tex] [tex]\theta[/tex] = 1

cos[tex]^{2}[/tex] [tex]\theta[/tex] = [tex]\frac{1}{2}[/tex]

[tex]\frac{d\theta}{dt}[/tex] = [tex]\frac{1}{10}[/tex] . cos[tex]^{2}[/tex] [tex]\theta[/tex]

= [tex]\frac{1}{10}[/tex] . cos[tex]^{2}[/tex][tex]\frac{1}{2}[/tex]

= 0.077 rads / min

or 4.6 rads /s

Thanks in advance!

**Physics Forums - The Fusion of Science and Community**

# Derivatives of trig functions and isosceles triangles.

Know someone interested in this topic? Share a link to this question via email,
Google+,
Twitter, or
Facebook

Have something to add?

- Similar discussions for: Derivatives of trig functions and isosceles triangles.

Loading...

**Physics Forums - The Fusion of Science and Community**