Derive the Volume of a Sphere using Calculus

Click For Summary
The discussion focuses on deriving the volume of a sphere using calculus by integrating a circle at angle θ. A user encountered issues with their approach, particularly in defining the thickness of the circular disk, mistakenly using arc length instead of the correct vertical thickness. The correct thickness is derived as dy = R cos(θ) dθ, which accounts for the vertical distance as the angle changes. Participants emphasize the importance of understanding the geometric implications of the calculations. The conversation highlights the need for clear communication and detailed explanations in mathematical problem-solving.
Shivam
Messages
32
Reaction score
2

Homework Statement


Derive the volume of sphere using Calculus. i saw videos on this topic on youtube, but i want to do it by the method of integrating a circle at angle θ (Theta) . i am posting a photo where i explained every thing i did but i couldn't know what i am doing wrong.

Homework Equations


Integrating a circle of radius r at angle θ (Theta)

The Attempt at a Solution


https://drive.google.com/open?id=1Va32w9eCJE_2nH4VIPqG8bFHRzcKuvIF[/B]
IMG_20180823_000643.jpg
 

Attachments

  • IMG_20180823_000643.jpg
    IMG_20180823_000643.jpg
    30 KB · Views: 549
Physics news on Phys.org
Shivam said:
i am posting a photo where i explained every thing i did but i couldn't know what i am doing wrong.
No you did not. You posted a link to your google drive, which other people do not have access to.

Also, you should make the effort of typing out your attempt if you want people to help you.
 
Your error is using ##ds## for the thickness of your disk. It should be ##dy=R\cos\theta d\theta##.
 
  • Like
Likes Shivam
Shivam said:

Homework Statement


Derive the volume of sphere using Calculus. i saw videos on this topic on youtube, but i want to do it by the method of integrating a circle at angle θ (Theta) . i am posting a photo where i explained every thing i did but i couldn't know what i am doing wrong.

Homework Equations


Integrating a circle of radius r at angle θ (Theta)

The Attempt at a Solution


https://drive.google.com/open?id=1Va32w9eCJE_2nH4VIPqG8bFHRzcKuvIF[/B]

I can see your attempted solution. The problem is with ##ds=Rd\theta##. That is arc length along the surface of the sphere. It is not the same as the thickness of your circular section. Can you correct it?
 
Shivam said:

Homework Statement


Derive the volume of sphere using Calculus. i saw videos on this topic on youtube, but i want to do it by the method of integrating a circle at angle θ (Theta) . i am posting a photo where i explained every thing i did but i couldn't know what i am doing wrong.

Homework Equations


Integrating a circle of radius r at angle θ (Theta)

The Attempt at a Solution


https://drive.google.com/open?id=1Va32w9eCJE_2nH4VIPqG8bFHRzcKuvIF[/B]
LCKurtz said:
Your error is using ##ds## for the thickness of your disk. It should be ##dy=R\cos\theta d\theta##.
I got the correct answer by using the correcct thickness you gave me , but i still don't know how did you get that, can you explain please.
 
Shivam said:
I got the correct answer by using the correcct thickness you gave me , but i still don't know how did you get that, can you explain please.

The thickness is the vertical thickness of the slice. The arc length you have is not vertical, it's tangent to the sphere. So it makes a varying angle with the vertical as you move up the sphere. Use trig to turn that into a vertical distance.
 
  • Like
Likes Shivam
LCKurtz said:
Your error is using ##ds## for the thickness of your disk. It should be ##dy=R\cos\theta d\theta##.

Can you show me how did you get that, i thought all day but i can't get it.
 
Shivam said:
Can you show me how did you get that, i thought all day but i can't get it.
Well, you have ##y=R \sin(\theta)##, so ##\frac{dy}{d\theta}=R \cos(\theta)##, so rearranging the differentials gives ##dy=R \cos(\theta)d\theta##. Also, try to understand this result from a geometrical point of view (i.e. how does a small increase in the angle influece the increase in y?)
 
  • Like
Likes Shivam

Similar threads

  • · Replies 3 ·
Replies
3
Views
5K
  • · Replies 6 ·
Replies
6
Views
3K
Replies
4
Views
3K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 1 ·
Replies
1
Views
7K
  • · Replies 9 ·
Replies
9
Views
9K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K