71GA
- 208
- 0
Our professor derived a Minkowski force like this:
<br /> F^\mu = \left[ \gamma(e\vec{E} + e(\vec{v}\times \vec{B})) , \gamma \frac{e \vec{E} \vec{v}}{c} \right]<br />
Does this mean that i can write 4-force like this?
<br /> F^\mu = <br /> \begin{bmatrix}<br /> \gamma(e\vec{E} + e(\vec{v_x}\times \vec{B}))\\<br /> \gamma(e\vec{E} + e(\vec{v_y}\times \vec{B}))\\<br /> \gamma(e\vec{E} + e(\vec{v_z}\times \vec{B}))\\<br /> \gamma \frac{e \vec{E} \vec{v}}{c}<br /> \end{bmatrix}<br />
Short anwser would be ok. How do i put this into a matrix form from which i can get Lorentz matrix ##\Lambda## for boost in $x$ direction?
<br /> F^\mu = \left[ \gamma(e\vec{E} + e(\vec{v}\times \vec{B})) , \gamma \frac{e \vec{E} \vec{v}}{c} \right]<br />
Does this mean that i can write 4-force like this?
<br /> F^\mu = <br /> \begin{bmatrix}<br /> \gamma(e\vec{E} + e(\vec{v_x}\times \vec{B}))\\<br /> \gamma(e\vec{E} + e(\vec{v_y}\times \vec{B}))\\<br /> \gamma(e\vec{E} + e(\vec{v_z}\times \vec{B}))\\<br /> \gamma \frac{e \vec{E} \vec{v}}{c}<br /> \end{bmatrix}<br />
Short anwser would be ok. How do i put this into a matrix form from which i can get Lorentz matrix ##\Lambda## for boost in $x$ direction?