Deriving Electromagnetic Theory

  • #1
1,344
32

Main Question or Discussion Point

Hi,

I am trying to re-derive, or should I say modify, the existing theory of classical electromagnetism by postulating the existence of magnetic monopoles. Where should I begin?
 

Answers and Replies

  • #2
Born2bwire
Science Advisor
Gold Member
1,779
18
This is a subject that is covered in many engineering books. In the end, it makes Maxwell's Equations symmetrical. The divergence of the magnetic flux density is the magnetic charge density, just like how the divergence of the electric flux density is the electric charge density. There will also be magnetic currents as well. You can change between the electric and magnetic fields for a given equation in such a system by making use of duality. I do not have my references on hand but basically it allows you to replace the electric field in an equation with the magnetic field and something similar with the permittivity, permeability, charges and currents.

Allowing for magnetic currents is often done in computations because the behavior of magnetic currents is like the "dual" of the electric currents. For example, I can excite the same electromagnetic wave from a given electric current by a magnetic current. The magnetic and electric currents will be related to eachother along the lines of the curl operator. So a linear dipole electric current is equivalent to a loop of magnetic current and vice-versa. This can allow us to more easily express the excitations of a field using magnetic currents.

Weng Cho Chew's "Waves and Fields in Inhomogeneous Media" discusses duality but many electrical engineering texts will probably have it (more so if they deal with computational methods or antennas since magnetic currents often arise in those subjects).
 
  • #3
jtbell
Mentor
15,544
3,452
It was also discussed in the edition of Halliday and Resnick's first-year physics textbook that I used nearly forty years ago. I don't know if the current editions still do this.
 
  • #4
1,344
32
Thanks! I'll use the books and if I have any further questions, I hope you won't mind answering them. :-)
 
  • #5
4,239
1
It might be useful to know, if you are using the Maxwell-Herz equations in differential form, to sign the magnetic current using the convention

[tex]-\nabla \times E - \frac{\partial B}{\partial t} = J_{magnetic}[/tex]
 

Related Threads on Deriving Electromagnetic Theory

  • Last Post
Replies
2
Views
5K
  • Last Post
Replies
13
Views
1K
Replies
22
Views
4K
Replies
8
Views
2K
Replies
5
Views
5K
Replies
25
Views
18K
Replies
3
Views
377
  • Last Post
Replies
3
Views
2K
  • Last Post
Replies
6
Views
2K
  • Last Post
Replies
1
Views
1K
Top