studentxlol
- 40
- 0
Homework Statement
A curve has equation y=(x^2+1)^4 + 2(x^2+1)^3. Show that \frac{dy}{dx}=4x(x^2+1)^2(2x^2+5).
Homework Equations
\frac{dy}{dx}=(\frac{dy}{du}\times \frac{du}{dx})+(\frac{dy}{dv} \times \frac{dv}{dx})
The Attempt at a Solution
y=(x^2+1)^4 + 2(x^2+1)^3
let u = (x^2+1)^4 and v=x^2+1 so that y=u^4+v^3
\frac{dy}{du}=4u^3=4(x^2+1)^3 and \frac{du}{dx}=2x
\frac{dy}{dv}=3v^2=3(x^2+1)^2 and \frac{dv}{dx}=2x
\therefore \frac{dy}{dx}=(\frac{dy}{du}\times \frac{du}{dx})+(\frac{dy}{dv} \times \frac{dv}{dx})=8x(x^2+1)^3+6x(x^2+1)^2
Why am I not getting the answer 4x(x^2+1)^2(2x^2+5)?