Hey guys,(adsbygoogle = window.adsbygoogle || []).push({});

as this is a basic QFT question, I wasn't sure to put it in the relativity or quantum section. Since this question specifically is about manipulating tensor expressions, i figured here would be appropriate.

My question is about equating coefficients in tensor expressions, 2.4.10-11 in Weinberg's Quantum Theory of Fields (2005).

[itex] i[ 1/2 \omega_{\mu \nu} J^{\mu \nu} - \epsilon_{mu}P^{\mu}, J^{\rho \sigma} ] = \omega_{\mu}^{\rho} J^{\mu \sigma} - \omega_{\nu}^{\sigma} J^{\rho \nu} - \epsilon^{\rho}P^{\sigma}+ \epsilon^{\sigma}P^{\rho}[/itex]

[itex] i [ 1/2 \omega_{\mu \nu} J^{\mu \nu} - \epsilon_{\mu} P^{\mu} ,P^{\rho} ]=\omega_{\mu}^{\rho} P^{\mu} [/itex]

The task is to equate coefficients on the epsilon and omega terms to find the commutators of the poincare algebra. I'm a bit confused because, for instance, the omega term on the LHS of the first equation has dummy indices, but on the RHS has real indices. I'm not sure what manipulations i can do besides raising and lowering with the metric.

**Physics Forums - The Fusion of Science and Community**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Deriving the poincare algebra

Loading...

Similar Threads - Deriving poincare algebra | Date |
---|---|

A Commutator of covariant derivative and D/ds on vector fields | Thursday at 6:20 AM |

I Interesting Derivation of Maxwell's Equations | Mar 11, 2018 |

A Sean Carroll Notes, Schwarzschild derivation, theorem name? | Mar 5, 2018 |

I FRW metric derivation: constraints from isotropic and homoge | Feb 26, 2018 |

A Deriving the Poincare patch from global coordinates in AdS##_{3}## | Apr 25, 2017 |

**Physics Forums - The Fusion of Science and Community**