- 1,118
- 1
Feeling a little bit more confident about my calculus skills I was hoping to check if this is correct. Let’s say you have:
g(|f(x)|)
And you want to take the derivative with respect to x, well using the chain rule you get:
\bigl( g(|f(x)|) \bigr)' = (|f(x)|)' g'(|f(x)|)
Looking more closly at (|f(x)|)'. Defining it as:
\left( +\sqrt{(f(x))^2} \right)'
Then using the chain rule we get:
(|f(x)|)' = 2f(x) f'(x) \: \frac{1}{2} \: \frac{1}{ +\sqrt{(f(x))^2} }
Simplifying:
(|f(x)|)' = f'(x) \frac{f(x)}{|f(x)|}
Substituting back in the original equation and sorting out the problem of when f(x) = 0:
\bigl( g(|f(x)|) \bigr)' = \begin{cases}<br /> f'(x) \frac{f(x)}{|f(x)|}g'(|f(x)|) & \text{if $ f(x) \neq 0$} \\ \\<br /> \lim_{f(x) \rightarrow 0} \left(f'(x) \frac{f(x)}{|f(x)|}g'(|f(x)|) \right) & \text{if $ f(x) = 0$ and $ \lim_{f(x) \uparrow 0} \left( f'(x) \frac{f(x)}{|f(x)|}g'(|f(x)|) \right) = \lim_{f(x) \downarrow 0} \left( f'(x) \frac{f(x)}{|f(x)|}g'(|f(x)|) \right)$} \\ \\<br /> \text{Undefinied} & \text{if $ f(x) = 0$ and $ \lim_{f(x) \uparrow 0} \left( f'(x) \frac{f(x)}{|f(x)|}g'(|f(x)|) \right) \neq \lim_{f(x) \downarrow 0} \left( f'(x) \frac{f(x)}{|f(x)|}g'(|f(x)|) \right)$}<br /> \end{cases}<br />
Correct? I know it all seems a bit over the top (especially when you look at the tex for it
) but I like things to be well defined and in a form like this where I understand it better.
Edit: I made a mistake, it should be correct now
g(|f(x)|)
And you want to take the derivative with respect to x, well using the chain rule you get:
\bigl( g(|f(x)|) \bigr)' = (|f(x)|)' g'(|f(x)|)
Looking more closly at (|f(x)|)'. Defining it as:
\left( +\sqrt{(f(x))^2} \right)'
Then using the chain rule we get:
(|f(x)|)' = 2f(x) f'(x) \: \frac{1}{2} \: \frac{1}{ +\sqrt{(f(x))^2} }
Simplifying:
(|f(x)|)' = f'(x) \frac{f(x)}{|f(x)|}
Substituting back in the original equation and sorting out the problem of when f(x) = 0:
\bigl( g(|f(x)|) \bigr)' = \begin{cases}<br /> f'(x) \frac{f(x)}{|f(x)|}g'(|f(x)|) & \text{if $ f(x) \neq 0$} \\ \\<br /> \lim_{f(x) \rightarrow 0} \left(f'(x) \frac{f(x)}{|f(x)|}g'(|f(x)|) \right) & \text{if $ f(x) = 0$ and $ \lim_{f(x) \uparrow 0} \left( f'(x) \frac{f(x)}{|f(x)|}g'(|f(x)|) \right) = \lim_{f(x) \downarrow 0} \left( f'(x) \frac{f(x)}{|f(x)|}g'(|f(x)|) \right)$} \\ \\<br /> \text{Undefinied} & \text{if $ f(x) = 0$ and $ \lim_{f(x) \uparrow 0} \left( f'(x) \frac{f(x)}{|f(x)|}g'(|f(x)|) \right) \neq \lim_{f(x) \downarrow 0} \left( f'(x) \frac{f(x)}{|f(x)|}g'(|f(x)|) \right)$}<br /> \end{cases}<br />
Correct? I know it all seems a bit over the top (especially when you look at the tex for it

Edit: I made a mistake, it should be correct now

Last edited: