Math Amateur
Gold Member
MHB
- 3,920
- 48
In John Stillwell's book: Elements of Number Theory, Exercise 6.1.2 reads as follows:
------------------------------------------------------
Describe the units of $$\mathbb{Z} [ \sqrt{2}]$$
------------------------------------------------------
Now ... $$\mathbb{Z} [ \sqrt{2}] = \{ a + b \sqrt{2} \ | \ a,b \in \mathbb{Z} \}$$We have that $$(a_1 + b_1 \sqrt{2} )$$ is a unit of $$\mathbb{Z} [ \sqrt{2}]$$ if there exists an element $$(a_2 + b_2 \sqrt{2} )$$ in $$\mathbb{Z} [ \sqrt{2}]$$ such that:
$$(a_1 + b_1 \sqrt{2} ) (a_2 + b_2 \sqrt{2} ) = (a_2 + b_2 \sqrt{2} ) (a_1 + b_1 \sqrt{2} ) = 1 = 1 + 0 \sqrt{2}$$So then, to determine all the units of $$\mathbb{Z} [ \sqrt{2}]$$ we need to determine all the solutions of the following equation:
$$(a_1 + b_1 \sqrt{2} ) (a_2 + b_2 \sqrt{2} ) = 1 = 1 + 0 \sqrt{2}$$
So proceeding, we have:
$$(a_1 + b_1 \sqrt{2} ) (a_2 + b_2 \sqrt{2} ) = 1 = 1 + 0 \sqrt{2}$$$$\Longrightarrow ( a_1a_2 + 2b_1b_2) + ( a_1b_2 + a_2b_1) \sqrt{2} = 1 + 0 \sqrt{2}$$$$\Longrightarrow a_1a_2 + 2b_1b_2 = 1$$
and $$a_2 + b_2 \sqrt{2} = 0$$But ... where to from here ... ?... ... unlike the case for $$\mathbb{Z} $$ a straightforward application on the two square identity does not seem to work ...Can someone please help?
Peter
------------------------------------------------------
Describe the units of $$\mathbb{Z} [ \sqrt{2}]$$
------------------------------------------------------
Now ... $$\mathbb{Z} [ \sqrt{2}] = \{ a + b \sqrt{2} \ | \ a,b \in \mathbb{Z} \}$$We have that $$(a_1 + b_1 \sqrt{2} )$$ is a unit of $$\mathbb{Z} [ \sqrt{2}]$$ if there exists an element $$(a_2 + b_2 \sqrt{2} )$$ in $$\mathbb{Z} [ \sqrt{2}]$$ such that:
$$(a_1 + b_1 \sqrt{2} ) (a_2 + b_2 \sqrt{2} ) = (a_2 + b_2 \sqrt{2} ) (a_1 + b_1 \sqrt{2} ) = 1 = 1 + 0 \sqrt{2}$$So then, to determine all the units of $$\mathbb{Z} [ \sqrt{2}]$$ we need to determine all the solutions of the following equation:
$$(a_1 + b_1 \sqrt{2} ) (a_2 + b_2 \sqrt{2} ) = 1 = 1 + 0 \sqrt{2}$$
So proceeding, we have:
$$(a_1 + b_1 \sqrt{2} ) (a_2 + b_2 \sqrt{2} ) = 1 = 1 + 0 \sqrt{2}$$$$\Longrightarrow ( a_1a_2 + 2b_1b_2) + ( a_1b_2 + a_2b_1) \sqrt{2} = 1 + 0 \sqrt{2}$$$$\Longrightarrow a_1a_2 + 2b_1b_2 = 1$$
and $$a_2 + b_2 \sqrt{2} = 0$$But ... where to from here ... ?... ... unlike the case for $$\mathbb{Z} $$ a straightforward application on the two square identity does not seem to work ...Can someone please help?
Peter