Determination of moment of inertia of a hollow cylinder

In summary, the student is trying to determine the moment of inertia of a hollow cylinder by using different tools and equations. He is having trouble finding a way to calculate the mass of the cylinder without knowing the density. He is also having trouble finding a way to determine the moment of inertia without knowing the velocity.
  • #1
Alettix
177
11
Hi!
I got the task to determine the moment of inertia of a hollow cylinder, however it's not about just measuring the mass and the inner and outer radius and putting it into the right formula, instead I should roll it down an inclined plane.

1. Homework Statement

I'm only allowed to use the following tools:
  • An inclined plane
  • Ruler and measuring-tape
  • Vernier caliper
  • Stopwatch
  • A hollow cynlinder
The problem states that the friction can be neglected and that the kinetic energy of the cynlinder will be the sum of it's translational and rotationan energy.

Homework Equations


Translational energy: Et = 1/2 * m v2
Rotational energy: Er = 1/2 * I ω2
Potential energy Ep = mhg

The Attempt at a Solution


My idea was to measure a short distance infront of the inclined plane, roll the cylinder down and use the stopwatch to determine the cylinders approximate velocity when leaving the plane. The angular velocity could then be calculated with the help of a measurment of the cylinders circumfence. Then, using the law of conservation of energy we get:
I = 2m (hg - v2)/ ω2
The problem is that this expression (just as the others I tried to derive) contains the mass of the cylinder...

Do you have any suggestion on how the measurment and the calculations should be done?

Thank you!
 
Physics news on Phys.org
  • #2
What formulas do you know that contain I?
 
  • #3
Maybe you've got the answer. The motion of any object under gravity is independent of its mass. So, unless you weigh the cylinder I'm not sure how you would calculate its mass.
 
  • #4
So this way you measure I/m . Should count as a determination of the moment of inertia of a cylindrical shell. If the exercise wants more (such as a formula for thick-walled cylinders), you'll need a bunch of cylinders. And a scale.
 
  • #5
BiGyElLoWhAt said:
What formulas do you know that contain I?

Well, not much. Bascially L = I * ω and τ = I * α

PeroK said:
Maybe you've got the answer. The motion of any object under gravity is independent of its mass. So, unless you weigh the cylinder I'm not sure how you would calculate its mass.

Yes, I too came to the conclusion that I could not determine its mass with the listed tools. But the task explicitly asks me to calculate the moment of inertia, so I guess there should be a way to do so without knowing the weight, I just can't find it...
 
  • #6
##\sqrt{\frac{I}{M}}## is the radius of gyration. To find M you'll need a force other than gravity.
 
  • #7
Do you know the density of the material comprising the cylinder?
 
  • #8
Hi Alettix! ;)

Your formula is slightly off.
It should be:
$$I = \frac{m(2gh-v^2)}{\omega^2}$$
With ##\omega=\frac v r##, it becomes:
$$I=mr^2\left(\frac{2gh}{v^2} - 1\right)$$

If the cylinder would have double the density, both its mass and its moment of inertia would double, but all measurements would remain the same.
So as stated, you either need to measure the mass with different means, or you can only give the ratio ##I/m##.

To measure the mass, you typically need a reference mass (and scales), or you need a reference force (spring or weighing equipment), neither of which is apparently available.
So I suspect you're supposed to determine ##I## in the form ##I=cm## or ##I=cmr^2##, where ##c## is the constant you need to find.
 
  • Like
Likes Alettix
  • #9
If you knew the density, you could determine the mass from the dimensions of the cylinder. Then you could determine I from the experiments.

Chet
 
  • #10
So i was thinking about it, and everyones right, you do need another force, but realistically, you have one: rolling friction. Since it acts between the 2 surfaces (your cylinder and your ramp) you could account for that in your sum of torques/forces equations. You need the coefficient of rolling friction, however. You could possibly determine that on a flat surface. The only concern i have is the accuracy of your hand with a stop watch. If the ramp is really long, you could calculate a reasonably sized delta within a reasonably small sigma value. But its all slightly conditional. Are you allowed to alter the cylinder and determine the moment of inertia of the altered cylinder? *Cough* sandpaper *\cough*
 
  • #11
The coefficient of friction won't help.
To force of friction is, just like everything else, proportional to the mass.
 
  • #12
Here maybe a clue:
Calculate the final velocity (v1) of a theoretical block of the same mass (m) as the cylinder, sliding down the same incline (without friction).
Calculate the final velocity (v2) of the cylinder over the same distance.
(use the elapsed time and distance)
Calculate the final linear KE of both the theoretical block ( ½ * m * v1² ) and the cylinder ( ½ * m * v2² )
Subtract the cylinder linear KE from the block linear KE, the remainder is the cylinder rotational KE at v2
This might help.
 
  • Like
Likes Alettix
  • #13
I like Serena said:
The coefficient of friction won't help.
To force of friction is, just like everything else, proportional to the mass.
True that ^
=[
 
  • #14
As I do neighter know the density of the cyliner, nor have access to any force independent of gravity, I'm now convinced that only the ratio I/m can be determined.
Thank you for the help everybody! :)
 
  • Like
Likes I like Serena
  • #15
You don't need the density,
A lot of assumptions are made:
Acceleration down the incline is constant.
Gravitational acceleration (g) is deemed to be fixed at 9.81 (m/s)/s
(this should have been stated)
Rolling resistance is negligable and i presume is ignored.
This all serves to simplify the problem, and assumes that the result won't be to far from the theoretical.

However:
Measure the mass of the cylinder and the ouside diameter (d) (which gives you the radius ( r = d / 2) ):
Log the distance (s) down the incline, the incline angle (A) and the time it takes the cylinder to roll down the incline.

Calculate the KE of a (theoretical) block of the same mass as the cylinder sliding (without friction) the same distance (s) down the ramp, using the steps:
1) calculate the acceleration rate (a) of the block down the incline from: a = g * Sine A
2) calculate the final velocity from: v = sqrt ( 2 * a * s )
3) calculate the final KE (in Joules) from: KE = ½ * mass * v²
(call this result 1)

Calculate the final linear KE of your cylinder from your results:
1) calculate the acceleration from: a = s / ( ½ * t ² )
2) calculate the final velocity from: v = sqrt ( 2 * a * s )
3) calculate the final linear KE of the cylinder from: KE = ½ * mass * v²
(call this result 2)

The difference between the two results tells you the KE that has been translated into rotational KE, with this (and the final rotation rate (ω) of the cylinder, which you get from the velocity and radius) you can find the moment of inertia by using the equation:
I = KE / ( ½ * ω ² )
 
  • #16
ω = v / r
( radians / sec )
 
  • #17
Isn't there still un unknown mass in there, in that KE?
I believe everything remains proportional to the mass, without influencing measurements in any way.
 

What is the definition of moment of inertia?

Moment of inertia is a measure of an object's resistance to changes in its rotational motion. It is the sum of the products of each mass element in the object and the square of its distance from the axis of rotation.

What is a hollow cylinder?

A hollow cylinder is a three-dimensional shape that has a circular cross section and is open at both ends. It is often used in engineering and physics applications due to its strength and light weight.

How is the moment of inertia of a hollow cylinder calculated?

The moment of inertia of a hollow cylinder can be calculated by using the formula I = ½MR², where M is the mass of the cylinder and R is the radius of the cylinder.

What factors affect the moment of inertia of a hollow cylinder?

The moment of inertia of a hollow cylinder is affected by its mass, radius, and distribution of mass around its axis of rotation. The greater the mass and radius of the cylinder, the higher its moment of inertia will be.

Why is it important to determine the moment of inertia of a hollow cylinder?

Determining the moment of inertia of a hollow cylinder is important in understanding its rotational properties and how it will behave when subjected to external forces. This information is crucial in designing and analyzing structures and machines that utilize hollow cylinders.

Similar threads

  • Introductory Physics Homework Help
2
Replies
40
Views
2K
  • Introductory Physics Homework Help
Replies
21
Views
1K
  • Introductory Physics Homework Help
Replies
16
Views
960
  • Introductory Physics Homework Help
Replies
21
Views
6K
  • Introductory Physics Homework Help
Replies
4
Views
7K
  • Introductory Physics Homework Help
Replies
14
Views
3K
  • Introductory Physics Homework Help
Replies
11
Views
2K
  • Introductory Physics Homework Help
Replies
1
Views
1K
  • Introductory Physics Homework Help
Replies
4
Views
3K
  • Introductory Physics Homework Help
Replies
2
Views
1K
Back
Top