MHB Determine all real x in x^n+x^(-n)

  • Thread starter Thread starter lfdahl
  • Start date Start date
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Determine all real $x$ such that

$$x^n+x^{-n}$$

is an integer for any integer $n$

Source: Nordic Math. Contest
 
Mathematics news on Phys.org
–1, 0, and 1, because for any other whole numbers, $$x^{–n}$$ will become fraction while for fractions, $$x^n$$ will stay fraction.
 
Monoxdifly said:
–1, 0, and 1, because for any other whole numbers, $$x^{–n}$$ will become fraction while for fractions, $$x^n$$ will stay fraction.

zero is not valid. so x = -1 or 1
 
Monoxdifly said:
–1, 0, and 1, because for any other whole numbers, $$x^{–n}$$ will become fraction while for fractions, $$x^n$$ will stay fraction.

Hi, Monoxdifly

Your conclusion is wrong. Try e.g. the value: $x = 2 + \sqrt{3}$. (and $x=0$ is not valid as pointed out by kaliprasad)
 
lfdahl said:
Determine all real $x$ such that

$$x^n+x^{-n}$$

is an integer for any integer $n$

Source: Nordic Math. Contest
[sp]If $x+x^{-1} = k$ (where $k$ is an integer) then $x^2+x^{-2} = (x+x^{-1})^2 - 2 = k^2-2$, which is also an integer. Similarly, $x^3+x^{-3} = (x+x^{-1})^3 - 3(x+x^{-1})$ is also an integer, and, by an induction argument using the binomial theorem, $x^n+x^{-n}$ is an integer for all integers $n$.

So it is sufficient to find all $x$ such that $x+x^{-1} = k$. But that is a quadratic equation with solutions $x = \frac12\bigl(k \pm\sqrt{k^2-4}\bigr)$. Those solutions are real for all integers $k$ apart from $k = 0$ or $\pm1$.

Thus the general solution is $x = \frac12\bigl(k \pm\sqrt{k^2-4}\bigr)$ ($k\in\Bbb{Z},\ |k|\geqslant2$).[/sp]
 
Hi, Opalg!

Thankyou for your correct answer! I guess, I could save a lot of time writing down the suggested solution, whenever one of your exemplary solutions appears on the screen! :D
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top