Determine eigenvalue-problem for steel pole

Click For Summary

Homework Help Overview

The discussion revolves around an eigenvalue problem related to the wave equation for a steel pole, specifically examining the boundary conditions and the implications for vibrational frequencies. The subject area includes differential equations and eigenvalue problems in the context of mechanical vibrations.

Discussion Character

  • Exploratory, Assumption checking, Mathematical reasoning

Approaches and Questions Raised

  • Participants explore the formulation of the eigenvalue problem, questioning the boundary conditions and their appropriateness for the physical scenario. There is discussion on the representation of functions and the implications of different boundary conditions on the eigenvalue solutions.

Discussion Status

The discussion is active, with participants providing insights and corrections regarding boundary conditions. Some participants have suggested alternative interpretations of the eigenvalue solutions and the range of indices for vibrational frequencies, indicating a productive exploration of the topic.

Contextual Notes

There are uncertainties regarding the correct boundary conditions for the problem, as well as the implications of different values for the eigenvalue parameter. Participants are also questioning the range of indices for the vibrational frequencies.

schniefen
Messages
177
Reaction score
4
Homework Statement
Consider a steel pole of length ##L=1## m, which is not connected (free ends on both sides). For simplicity, we study only motions in the direction along the pole. Determine the eigenvalue-problem you need to solve.
Relevant Equations
The wave equation: ##\frac{\partial^2 \psi(x,t)}{\partial x^2}=\frac{\rho}{E}\frac{\partial^2 \psi(x,t)}{\partial t^2}##, where ##\rho## denotes density and ##E## pressure. Also, since the ends are free, ##\psi(0,t)=0## and ##\psi(L,t)=0##.
If we assume that ##\psi## has a Fourier transform ##\hat{\psi}##, so that ##\psi(x,t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}\hat{\psi}(x,\omega)e^{i\omega t}\mathrm{d}\omega##, then the wave equation reduces to ##-\rho\omega^2\hat{\psi}(x,\omega)=E\frac{\partial^2 \hat{\psi}(x,\omega)}{\partial x^2}##, since the integrands need to equal. Also, we have ##\hat{\psi}(0,\omega)=0## and ##\hat{\psi}(L,\omega)=0##.

This already reveals the eigenvalue-problem, however, the answer given is ##-\lambda f(x)=\frac{\partial^2 f(x)}{\partial x^2}## with ##f(0)=f(L)=0##. How can ##\hat{\psi}(x,\omega)## be rewritten in terms of a function only depending on ##x## and why the partial derivatives notation if the function only does depend on a single variable?
 
Physics news on Phys.org
Are those the right boundary conditions for free ends? Looks like fixed ends to me.
 
  • Like
Likes   Reactions: vanhees71 and schniefen
You are right, I was wrong. The boundary conditions should read ##\frac{\partial \psi(x,t)}{\partial x}\bigg\rvert_{x=0}=0## and ##\frac{\partial \psi(x,t)}{\partial x}\bigg\rvert_{x=L}=0##. And these are the same for ##\hat{\psi}(x,\omega)##.
 
A follow-up to the question is to determine the vibrational frequencies. We have

##-\frac{\rho\omega^2}{E}\hat{\psi}(x,\omega)=\frac{\partial^2 \hat{\psi}(x,\omega)}{\partial x^2},##​

and define ##\lambda=\frac{\rho\omega^2}{E}##. Then ##\hat{\psi}(x,\omega)=\cos{(\sqrt{\lambda}x)}## satisfies the above equation as well as ##\frac{\partial \hat{\psi}(x,t)}{\partial x}\bigg\rvert_{x=0}=0##. The second boundary condition gives

##\frac{\partial \hat{\psi}(x,t)}{\partial x}\bigg\rvert_{x=L}=-\sqrt{\lambda}\sin{(\sqrt{\lambda}L)}=0.##​

This implies either ##\lambda=0## or

##\lambda_j=\left(\frac{(j+1)\pi}{L}\right)^2##
and thus

##\omega^2=\omega_j^2=\frac{E}{\rho}\left(\frac{(j+1)\pi}{L}\right)^2.##​

The frequencies are then simply ##f_j=\frac{\omega_j}{2\pi}=\sqrt{\frac{E}{\rho}}\frac{j+1}{2L}##. I am a little uncertain about the range of ##j## though. There should be a frequency that is ##0##, which would imply ##j=-1,0,1,2, ...##.
 
schniefen said:
This implies either λ=0 or
Why break it into two cases? Doesn't ##\lambda_j=(\frac{j\pi}L)^2##, ##j=0, 1, 2,..## cover it?
 
  • Like
Likes   Reactions: schniefen

Similar threads

  • · Replies 10 ·
Replies
10
Views
2K
Replies
24
Views
2K
Replies
2
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
4
Views
3K
  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
5
Views
2K