Determine eigenvalue-problem for steel pole

Click For Summary
SUMMARY

The discussion focuses on determining the eigenvalue problem for a steel pole using the wave equation. The equation is expressed as ##-\rho\omega^2\hat{\psi}(x,\omega)=E\frac{\partial^2 \hat{\psi}(x,\omega)}{\partial x^2}##, leading to the eigenvalue problem ##-\lambda f(x)=\frac{\partial^2 f(x)}{\partial x^2}## with boundary conditions ##\frac{\partial \psi(x,t)}{\partial x}\bigg\rvert_{x=0}=0## and ##\frac{\partial \psi(x,t)}{\partial x}\bigg\rvert_{x=L}=0##. The vibrational frequencies are derived as ##f_j=\frac{\omega_j}{2\pi}=\sqrt{\frac{E}{\rho}}\frac{j+1}{2L}##, with ##\lambda_j=\left(\frac{(j+1)\pi}{L}\right)^2## for integer values of ##j##. The discussion also clarifies the correct boundary conditions for a free-end scenario.

PREREQUISITES
  • Understanding of Fourier transforms and their applications in wave equations.
  • Knowledge of eigenvalue problems in differential equations.
  • Familiarity with boundary conditions in mechanical systems.
  • Basic principles of vibrational analysis in materials like steel.
NEXT STEPS
  • Study the application of Fourier transforms in solving partial differential equations.
  • Explore eigenvalue problems in more complex geometries and boundary conditions.
  • Learn about vibrational analysis techniques for different materials and structures.
  • Investigate the implications of boundary conditions on vibrational modes in engineering applications.
USEFUL FOR

Mechanical engineers, applied mathematicians, and students studying structural dynamics or wave mechanics will benefit from this discussion, particularly those focused on eigenvalue problems and vibrational analysis of materials.

schniefen
Messages
177
Reaction score
4
Homework Statement
Consider a steel pole of length ##L=1## m, which is not connected (free ends on both sides). For simplicity, we study only motions in the direction along the pole. Determine the eigenvalue-problem you need to solve.
Relevant Equations
The wave equation: ##\frac{\partial^2 \psi(x,t)}{\partial x^2}=\frac{\rho}{E}\frac{\partial^2 \psi(x,t)}{\partial t^2}##, where ##\rho## denotes density and ##E## pressure. Also, since the ends are free, ##\psi(0,t)=0## and ##\psi(L,t)=0##.
If we assume that ##\psi## has a Fourier transform ##\hat{\psi}##, so that ##\psi(x,t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}\hat{\psi}(x,\omega)e^{i\omega t}\mathrm{d}\omega##, then the wave equation reduces to ##-\rho\omega^2\hat{\psi}(x,\omega)=E\frac{\partial^2 \hat{\psi}(x,\omega)}{\partial x^2}##, since the integrands need to equal. Also, we have ##\hat{\psi}(0,\omega)=0## and ##\hat{\psi}(L,\omega)=0##.

This already reveals the eigenvalue-problem, however, the answer given is ##-\lambda f(x)=\frac{\partial^2 f(x)}{\partial x^2}## with ##f(0)=f(L)=0##. How can ##\hat{\psi}(x,\omega)## be rewritten in terms of a function only depending on ##x## and why the partial derivatives notation if the function only does depend on a single variable?
 
Physics news on Phys.org
Are those the right boundary conditions for free ends? Looks like fixed ends to me.
 
  • Like
Likes   Reactions: vanhees71 and schniefen
You are right, I was wrong. The boundary conditions should read ##\frac{\partial \psi(x,t)}{\partial x}\bigg\rvert_{x=0}=0## and ##\frac{\partial \psi(x,t)}{\partial x}\bigg\rvert_{x=L}=0##. And these are the same for ##\hat{\psi}(x,\omega)##.
 
A follow-up to the question is to determine the vibrational frequencies. We have

##-\frac{\rho\omega^2}{E}\hat{\psi}(x,\omega)=\frac{\partial^2 \hat{\psi}(x,\omega)}{\partial x^2},##​

and define ##\lambda=\frac{\rho\omega^2}{E}##. Then ##\hat{\psi}(x,\omega)=\cos{(\sqrt{\lambda}x)}## satisfies the above equation as well as ##\frac{\partial \hat{\psi}(x,t)}{\partial x}\bigg\rvert_{x=0}=0##. The second boundary condition gives

##\frac{\partial \hat{\psi}(x,t)}{\partial x}\bigg\rvert_{x=L}=-\sqrt{\lambda}\sin{(\sqrt{\lambda}L)}=0.##​

This implies either ##\lambda=0## or

##\lambda_j=\left(\frac{(j+1)\pi}{L}\right)^2##
and thus

##\omega^2=\omega_j^2=\frac{E}{\rho}\left(\frac{(j+1)\pi}{L}\right)^2.##​

The frequencies are then simply ##f_j=\frac{\omega_j}{2\pi}=\sqrt{\frac{E}{\rho}}\frac{j+1}{2L}##. I am a little uncertain about the range of ##j## though. There should be a frequency that is ##0##, which would imply ##j=-1,0,1,2, ...##.
 
schniefen said:
This implies either λ=0 or
Why break it into two cases? Doesn't ##\lambda_j=(\frac{j\pi}L)^2##, ##j=0, 1, 2,..## cover it?
 
  • Like
Likes   Reactions: schniefen

Similar threads

  • · Replies 10 ·
Replies
10
Views
2K
Replies
24
Views
2K
Replies
2
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
4
Views
2K
  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
5
Views
2K