math2010
- 19
- 0
Homework Statement
Determine if the transformation T: R^2\rightarrow R^2 is linear if T(x, y)= (x+1, 2y)
Homework Equations
1. T(u + v) = T(u) + T(v)
2. T(c*u) = cT(u)
3. T(0) = 0
The Attempt at a Solution
(1). I'm not sure how to prove the first condition (additivity). Can anyone help?
(2). T(c x,c y) = (c x+1, c 2y) = c(x+1, 2y) =c T(x,y)
For some scalar c.
(3). In (2) if c=0
T(0 x,0 y) = (0 x+1, 0 2y) = 0(x+1, 2y) =0