Determine the type of triangle PQR

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Triangle Type
Click For Summary
SUMMARY

The discussion centers on determining the type of triangle PQR under the condition that $\cos P \cos Q + \sin P \sin Q \sin R = 1$. It is established that when $P = Q = \frac{\pi}{4}$ and $R = \frac{\pi}{2}$, triangle PQR is a right-angled isosceles triangle. The conclusion is supported by the mathematical identities involved in the cosine and sine functions, confirming the triangle's properties.

PREREQUISITES
  • Understanding of trigonometric identities
  • Knowledge of triangle properties, specifically right-angled triangles
  • Familiarity with angles in radians
  • Basic geometry concepts related to isosceles triangles
NEXT STEPS
  • Study trigonometric identities and their applications in geometry
  • Explore properties of right-angled isosceles triangles
  • Investigate the implications of the Law of Cosines in triangle classification
  • Learn about the relationship between angles and side lengths in triangles
USEFUL FOR

Mathematicians, geometry students, and educators looking to deepen their understanding of triangle classifications and trigonometric applications.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Determine all triangles $PQR$ for which $\cos P \cos Q+\sin P \sin Q \sin R=1$.
 
Mathematics news on Phys.org
because of symmetry in P and Q let us assume P > Q

$\sin\, R $ cannot be 1 as $\sin\, R =1$ means
$\cos\, P \cos \, Q + \sin\, P \sin\, Q = 1$
or $\cos(P-Q)= 1$
so $R = (P-Q)= \dfrac{\pi}{2}$
which is impossible
$\sin\, R $ cannot be $\lt1$ as $\sin\, R \lt 1$ means
$\cos\, P \cos \, Q + \sin\, P \sin\, Q \gt1$
or $\cos(P-Q)\gt 1$ which is impossible
so no triangle

Thanks to Opalg's comment below I revisited the ans and realized that I had done the mistake that
$\cos(P-Q)= 1$
=> $(P-Q) = \dfrac{\pi}{2}$
it should be
$P-Q = 0$ giving $P=Q=\dfrac{\pi}{4}$ and $R = \dfrac{\pi}{2}$
 
Last edited:
kaliprasad said:
because of symmetry in P and Q let us assume P > Q

$\sin\, R $ cannot be 1 as $\sin\, R =1$ means
$\cos\, P \cos \, Q + \sin\, P \sin\, Q = 1$
or $\cos(P-Q)= 1$
so $R = (P-Q)= \dfrac{\pi}{2}$
which is impossible

$\sin\, R $ cannot be $\lt1$ as $\sin\, R \lt 1$ means
$\cos\, P \cos \, Q + \sin\, P \sin\, Q \gt1$
or $\cos(P-Q)\gt 1$ which is impossible
so no triangle
[sp]What about $P = Q = \frac\pi4$, $R = \frac\pi2$?[/sp]
 
Opalg said:
[sp]What about $P = Q = \frac\pi4$, $R = \frac\pi2$?[/sp]

Thanks Opalg for your comment!

kaliprasad said:
because of symmetry in P and Q let us assume P > Q

$\sin\, R $ cannot be 1 as $\sin\, R =1$ means
$\cos\, P \cos \, Q + \sin\, P \sin\, Q = 1$
or $\cos(P-Q)= 1$
so $R = (P-Q)= \dfrac{\pi}{2}$
which is impossible
$\sin\, R $ cannot be $\lt1$ as $\sin\, R \lt 1$ means
$\cos\, P \cos \, Q + \sin\, P \sin\, Q \gt1$
or $\cos(P-Q)\gt 1$ which is impossible
so no triangle

Thanks to Opalg's comment below I revisited the ans and realized that I had done the mistake that
$\cos(P-Q)= 1$
=> $(P-Q) = \dfrac{\pi}{2}$
it should be
$P-Q = 0$ giving $P=Q=\dfrac{\pi}{4}$ and $R = \dfrac{\pi}{2}$

Thanks for participating, kali! Your answer is correct, i.e. $PQR$ is a right-angled isosceles triangle.

The other brilliant solution that I want to share here is shown as follow:
Common sense tells us that

$\cos (P-Q)\le 1$

$\cos (P-Q)=\cos P \cos Q+\sin P \sin Q \le 1$---(*)

But we are told that $\cos P \cos Q=1-\sin P \sin Q\sin R$

Hence inequality (*) becomes

$\cos (P-Q)=1-\sin P \sin Q\sin R+\sin P \sin Q \le 1$

$\cos (P-Q)=1+\sin P \sin Q(1-\sin R) \le 1$

We can conclude by now that $\sin R=1$ and $\cos (P-Q)=1$, which means $R=90^{\circ}$, $P=Q=45^{\circ}$, or $PQR$ is a right-angled isosceles triangle.
 

Similar threads

  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K