MHB Determine the type of triangle PQR

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Triangle Type
AI Thread Summary
The discussion centers on determining the type of triangle PQR given the equation $\cos P \cos Q + \sin P \sin Q \sin R = 1$. It is established that when angles P and Q are both $\frac{\pi}{4}$ and R is $\frac{\pi}{2}$, triangle PQR is a right-angled isosceles triangle. Participants confirm the correctness of this classification and share additional insights on the properties of such triangles. The conversation highlights the relationship between the angles and the specific triangle type. Overall, the analysis reinforces the conclusion that PQR is indeed a right-angled isosceles triangle.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Determine all triangles $PQR$ for which $\cos P \cos Q+\sin P \sin Q \sin R=1$.
 
Mathematics news on Phys.org
because of symmetry in P and Q let us assume P > Q

$\sin\, R $ cannot be 1 as $\sin\, R =1$ means
$\cos\, P \cos \, Q + \sin\, P \sin\, Q = 1$
or $\cos(P-Q)= 1$
so $R = (P-Q)= \dfrac{\pi}{2}$
which is impossible
$\sin\, R $ cannot be $\lt1$ as $\sin\, R \lt 1$ means
$\cos\, P \cos \, Q + \sin\, P \sin\, Q \gt1$
or $\cos(P-Q)\gt 1$ which is impossible
so no triangle

Thanks to Opalg's comment below I revisited the ans and realized that I had done the mistake that
$\cos(P-Q)= 1$
=> $(P-Q) = \dfrac{\pi}{2}$
it should be
$P-Q = 0$ giving $P=Q=\dfrac{\pi}{4}$ and $R = \dfrac{\pi}{2}$
 
Last edited:
kaliprasad said:
because of symmetry in P and Q let us assume P > Q

$\sin\, R $ cannot be 1 as $\sin\, R =1$ means
$\cos\, P \cos \, Q + \sin\, P \sin\, Q = 1$
or $\cos(P-Q)= 1$
so $R = (P-Q)= \dfrac{\pi}{2}$
which is impossible

$\sin\, R $ cannot be $\lt1$ as $\sin\, R \lt 1$ means
$\cos\, P \cos \, Q + \sin\, P \sin\, Q \gt1$
or $\cos(P-Q)\gt 1$ which is impossible
so no triangle
[sp]What about $P = Q = \frac\pi4$, $R = \frac\pi2$?[/sp]
 
Opalg said:
[sp]What about $P = Q = \frac\pi4$, $R = \frac\pi2$?[/sp]

Thanks Opalg for your comment!

kaliprasad said:
because of symmetry in P and Q let us assume P > Q

$\sin\, R $ cannot be 1 as $\sin\, R =1$ means
$\cos\, P \cos \, Q + \sin\, P \sin\, Q = 1$
or $\cos(P-Q)= 1$
so $R = (P-Q)= \dfrac{\pi}{2}$
which is impossible
$\sin\, R $ cannot be $\lt1$ as $\sin\, R \lt 1$ means
$\cos\, P \cos \, Q + \sin\, P \sin\, Q \gt1$
or $\cos(P-Q)\gt 1$ which is impossible
so no triangle

Thanks to Opalg's comment below I revisited the ans and realized that I had done the mistake that
$\cos(P-Q)= 1$
=> $(P-Q) = \dfrac{\pi}{2}$
it should be
$P-Q = 0$ giving $P=Q=\dfrac{\pi}{4}$ and $R = \dfrac{\pi}{2}$

Thanks for participating, kali! Your answer is correct, i.e. $PQR$ is a right-angled isosceles triangle.

The other brilliant solution that I want to share here is shown as follow:
Common sense tells us that

$\cos (P-Q)\le 1$

$\cos (P-Q)=\cos P \cos Q+\sin P \sin Q \le 1$---(*)

But we are told that $\cos P \cos Q=1-\sin P \sin Q\sin R$

Hence inequality (*) becomes

$\cos (P-Q)=1-\sin P \sin Q\sin R+\sin P \sin Q \le 1$

$\cos (P-Q)=1+\sin P \sin Q(1-\sin R) \le 1$

We can conclude by now that $\sin R=1$ and $\cos (P-Q)=1$, which means $R=90^{\circ}$, $P=Q=45^{\circ}$, or $PQR$ is a right-angled isosceles triangle.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Back
Top