Determine the type of triangle PQR

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Triangle Type
Click For Summary

Discussion Overview

The discussion revolves around determining the type of triangle PQR based on the equation $\cos P \cos Q + \sin P \sin Q \sin R = 1$. Participants explore specific angle values to identify the characteristics of the triangle.

Discussion Character

  • Exploratory, Debate/contested, Mathematical reasoning

Main Points Raised

  • One participant suggests testing the angles $P = Q = \frac{\pi}{4}$ and $R = \frac{\pi}{2}$ to see if they satisfy the given equation.
  • Another participant agrees with the previous suggestion and confirms that the triangle PQR is a right-angled isosceles triangle based on the proposed angles.
  • A later reply mentions a "brilliant solution" related to the triangle type, but details of this solution are not provided in the excerpt.

Areas of Agreement / Disagreement

There appears to be some agreement on the specific case of $P = Q = \frac{\pi}{4}$ and $R = \frac{\pi}{2}$ leading to a right-angled isosceles triangle, but the overall discussion remains open to further exploration of other potential triangles.

Contextual Notes

The discussion does not clarify whether other combinations of angles could also satisfy the equation, leaving the exploration of triangle types incomplete.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Determine all triangles $PQR$ for which $\cos P \cos Q+\sin P \sin Q \sin R=1$.
 
Mathematics news on Phys.org
because of symmetry in P and Q let us assume P > Q

$\sin\, R $ cannot be 1 as $\sin\, R =1$ means
$\cos\, P \cos \, Q + \sin\, P \sin\, Q = 1$
or $\cos(P-Q)= 1$
so $R = (P-Q)= \dfrac{\pi}{2}$
which is impossible
$\sin\, R $ cannot be $\lt1$ as $\sin\, R \lt 1$ means
$\cos\, P \cos \, Q + \sin\, P \sin\, Q \gt1$
or $\cos(P-Q)\gt 1$ which is impossible
so no triangle

Thanks to Opalg's comment below I revisited the ans and realized that I had done the mistake that
$\cos(P-Q)= 1$
=> $(P-Q) = \dfrac{\pi}{2}$
it should be
$P-Q = 0$ giving $P=Q=\dfrac{\pi}{4}$ and $R = \dfrac{\pi}{2}$
 
Last edited:
kaliprasad said:
because of symmetry in P and Q let us assume P > Q

$\sin\, R $ cannot be 1 as $\sin\, R =1$ means
$\cos\, P \cos \, Q + \sin\, P \sin\, Q = 1$
or $\cos(P-Q)= 1$
so $R = (P-Q)= \dfrac{\pi}{2}$
which is impossible

$\sin\, R $ cannot be $\lt1$ as $\sin\, R \lt 1$ means
$\cos\, P \cos \, Q + \sin\, P \sin\, Q \gt1$
or $\cos(P-Q)\gt 1$ which is impossible
so no triangle
[sp]What about $P = Q = \frac\pi4$, $R = \frac\pi2$?[/sp]
 
Opalg said:
[sp]What about $P = Q = \frac\pi4$, $R = \frac\pi2$?[/sp]

Thanks Opalg for your comment!

kaliprasad said:
because of symmetry in P and Q let us assume P > Q

$\sin\, R $ cannot be 1 as $\sin\, R =1$ means
$\cos\, P \cos \, Q + \sin\, P \sin\, Q = 1$
or $\cos(P-Q)= 1$
so $R = (P-Q)= \dfrac{\pi}{2}$
which is impossible
$\sin\, R $ cannot be $\lt1$ as $\sin\, R \lt 1$ means
$\cos\, P \cos \, Q + \sin\, P \sin\, Q \gt1$
or $\cos(P-Q)\gt 1$ which is impossible
so no triangle

Thanks to Opalg's comment below I revisited the ans and realized that I had done the mistake that
$\cos(P-Q)= 1$
=> $(P-Q) = \dfrac{\pi}{2}$
it should be
$P-Q = 0$ giving $P=Q=\dfrac{\pi}{4}$ and $R = \dfrac{\pi}{2}$

Thanks for participating, kali! Your answer is correct, i.e. $PQR$ is a right-angled isosceles triangle.

The other brilliant solution that I want to share here is shown as follow:
Common sense tells us that

$\cos (P-Q)\le 1$

$\cos (P-Q)=\cos P \cos Q+\sin P \sin Q \le 1$---(*)

But we are told that $\cos P \cos Q=1-\sin P \sin Q\sin R$

Hence inequality (*) becomes

$\cos (P-Q)=1-\sin P \sin Q\sin R+\sin P \sin Q \le 1$

$\cos (P-Q)=1+\sin P \sin Q(1-\sin R) \le 1$

We can conclude by now that $\sin R=1$ and $\cos (P-Q)=1$, which means $R=90^{\circ}$, $P=Q=45^{\circ}$, or $PQR$ is a right-angled isosceles triangle.
 

Similar threads

  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K