rmfw
- 53
- 0
[STRIKE][/STRIKE]
A particle coming from +∞ with energy E colides with a potential of the form:
V = ∞ , x<0 (III)
V = -V0 , 0<x<a (II)
V = 0, x>a (I)
a) Determine the wave function of the particle considering that the amplitude of the incident wave is A. Writting the amplitude of the reflected wave at x=a in the form
\frac{B}{A} = e^{i\delta}
determine \delta . What is the value of \delta in the limit where V0 = 0 ?
b) Determine the probability density current in x>a
a)
For region I :
\Psi_{I} (x) = Ae^{-ikx} + Be^{ikx} , k=\frac{\sqrt{2mE}}{\hbar}
II:
\Psi_{II} (x) = Csin(lx) + Dcos(lx) , l=\frac{\sqrt{2(mE+V_{0}}}{\hbar}
III:
\Psi_{III} (x) = 0Boundary conditions:
at x=0:
0 = Csin(lx) + Dcos(lx) (=) D = 0
So \Psi_{II} (x) = Csin(lx)
at x=a:
Ae^{-ika} + Be^{ika} = Csin(la) (1)
and
-ikAe^{-ika} + ikBe^{ika} = lCcos(la) (2)
Dividing (1) for (2) I got:
\frac{B}{A} = e^{-2ika} \frac{(-\frac{1}{l}tan(la)ik-1)}{(1-\frac{1}{l}tan(la)ik)}
How can I get rid of that constant that is multiplying by the exponential? Is this even right?
Homework Statement
A particle coming from +∞ with energy E colides with a potential of the form:
V = ∞ , x<0 (III)
V = -V0 , 0<x<a (II)
V = 0, x>a (I)
a) Determine the wave function of the particle considering that the amplitude of the incident wave is A. Writting the amplitude of the reflected wave at x=a in the form
\frac{B}{A} = e^{i\delta}
determine \delta . What is the value of \delta in the limit where V0 = 0 ?
b) Determine the probability density current in x>a
The Attempt at a Solution
a)
For region I :
\Psi_{I} (x) = Ae^{-ikx} + Be^{ikx} , k=\frac{\sqrt{2mE}}{\hbar}
II:
\Psi_{II} (x) = Csin(lx) + Dcos(lx) , l=\frac{\sqrt{2(mE+V_{0}}}{\hbar}
III:
\Psi_{III} (x) = 0Boundary conditions:
at x=0:
0 = Csin(lx) + Dcos(lx) (=) D = 0
So \Psi_{II} (x) = Csin(lx)
at x=a:
Ae^{-ika} + Be^{ika} = Csin(la) (1)
and
-ikAe^{-ika} + ikBe^{ika} = lCcos(la) (2)
Dividing (1) for (2) I got:
\frac{B}{A} = e^{-2ika} \frac{(-\frac{1}{l}tan(la)ik-1)}{(1-\frac{1}{l}tan(la)ik)}
How can I get rid of that constant that is multiplying by the exponential? Is this even right?
Last edited: