I Determining the number of independent equations

  • I
  • Thread starter Thread starter guideonl
  • Start date Start date
  • Tags Tags
    Independent
guideonl
Messages
58
Reaction score
6
TL;DR Summary
geometry, determining number of independet equations
Hi everyone,
In geometry problems involved with triangles (inside a circle in my case), I can write different equations based on some known measures using pythagoras theorem, similarity , trigonometric and geometric relations. But, if I write all these equations I propably get some dependent equations.
My question is: how can I avoide depending equations? in other words, for n given triangles, how many independet equations/relations i can write?
Also, please note if there are dependent equations/relations in which using one- you may not use the other, otherwise you get dependent equations.

Thanks
 
Mathematics news on Phys.org
The important part first: I do not know an answer.

In geometry we have usually linear and quadratic equations, that is a set of polynomials ##S=\{\,p_1,\ldots,p_n\,\}## which generate an ideal ##\mathcal{I} \subseteq \mathbb{R}[X_1,\ldots,X_m]##.
Now there are some problems: the ##p_i## are not linear, the variables are not independent, i.e. we have uniqueness up to ##\mathcal{I}## and we do not know ##\mathcal{I}##, and there are many variables: angles and distances. A geometric statement is thus the question whether a certain polynomial is in ##\mathcal{I} ## or not.

I guess the main problem will be ##\mathcal{I} ## and your question is: How can we find a minimal system of generating polynomials for ##\mathcal{I} ?## This leads via algebraic geometry into ring theory. However, there is no general way to determine the generators of ##\mathcal{I} ## that I knew of, other than in the case of linear polynomials.
 
Thank you fresh_42...
Well, you took the problem far away.. I meant using basic geometry & algebra rules...
 
guideonl said:
Thank you fresh_42...
Well, you took the problem far away.. I meant using basic geometry & algebra rules...
Your thread is labeled with an "A" prefix, meaning that you want the discussion at the Advanced / graduate school level. I'll change it for you now to "I" = Intermediate (undergraduate level). :smile:
 
guideonl said:
Thank you fresh_42...
Well, you took the problem far away.. I meant using basic geometry & algebra rules...
I ran so many times in complicated circles, arriving with an equation I could have started with, that I doubt there is an easy solution. You can only list all variables and attach to every variable what you know, e.g. given a triangle intersected by one of its heights, then we have ##\alpha+\beta+\gamma =\pi## but may only add one of the partial triangles to the list of equation. However, we might need an angle in the other part and all of a sudden we have a redundancy.
 
guideonl said:
Thank you fresh_42...
Well, you took the problem far away.. I meant using basic geometry & algebra rules...
Here is the corresponding framework: Gröbner bases.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top