Differences in Presentation of Ordinary Partial Derivatives of Tensors

mokrunka
Messages
5
Reaction score
0
Ok folks, I've taken a stab at the Latex thing (for the first time, so please bear with me).

I've mentioned before that I'm teaching myself relativity and tensors, and I've come across a question.

I have a few different books that I'm referencing, and I've seen them present the ordinary partial derivative in 3 different ways. It took me an hour to put together what I have below, so I have omitted the 3rd presentation, but I think I'm getting the message across with the examples below.

1)

V_{k'}=\frac{\partial u^{i}}{\partial u^{k'}}V_{k}

\frac{\partial}{\partial u^{l'}}(\frac{\partial u^{i}}{\partial u^{k'}}V_{i})=\frac{\partial^{2}u^{i}}{\partial u^{l'}\partial u^{k'}}V_{i}+\frac{\partial V_{i}\partial u^{i}}{\partial u^{l'}\partial u^{k'}}

2)

A_{s'}=\frac{\partial x^{r}}{\partial x^{s'}}A_{r}

\frac{\partial A_{s'}}{\partial x^{k'}}=\frac{\partial^{2}x^{r}}{\partial x^{k'}\partial x^{s'}}A_{r}+\frac{\partial A_{r}\partial x^{p}\partial x^{r}}{\partial x^{p}\partial x^{k'}\partial x^{s'}}

In the second example, there seems to be an additional partial derivative being conducted in the second term on the RHS of the equation. This is the first step (in the text) of explaining the need for the covariant derivative, and I'm trying to understand why some texts have this additional partial derivative, and indeed the third text has 3 sets of partial derivatives in the first term of the RHS of the equations. Can anyone help me understand why this term is here, and why the presentation is inconsistent?
 
Physics news on Phys.org
see attachment
 

Attachments

Right, I know they're the same from the chain rule.

My question really I guess is why is it necessary to add the additional term? Is it becauseA_{r}(x^{p}(x^{k'}))?

Since the text seems to present this in different ways, I'd really like to understand the mechanics of why this extra term is there (and then cancelled) so that I can make sure I understand the derivations and tensor operations further along.
 
You are guessing correctly.
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. The Relativator was sold by (as printed) Atomic Laboratories, Inc. 3086 Claremont Ave, Berkeley 5, California , which seems to be a division of Cenco Instruments (Central Scientific Company)... Source: https://www.physicsforums.com/insights/relativator-circular-slide-rule-simulated-with-desmos/ by @robphy
In Philippe G. Ciarlet's book 'An introduction to differential geometry', He gives the integrability conditions of the differential equations like this: $$ \partial_{i} F_{lj}=L^p_{ij} F_{lp},\,\,\,F_{ij}(x_0)=F^0_{ij}. $$ The integrability conditions for the existence of a global solution ##F_{lj}## is: $$ R^i_{jkl}\equiv\partial_k L^i_{jl}-\partial_l L^i_{jk}+L^h_{jl} L^i_{hk}-L^h_{jk} L^i_{hl}=0 $$ Then from the equation: $$\nabla_b e_a= \Gamma^c_{ab} e_c$$ Using cartesian basis ## e_I...
Back
Top