I Different norms and how L1 leads to the sparsest solution

  • I
  • Thread starter Thread starter fog37
  • Start date Start date
AI Thread Summary
Different norms, such as L1, L2, and L0, have unique geometric properties that influence the solutions to underdetermined systems of linear equations. The L0 norm, while ideal for achieving sparsity, is non-convex and impractical for optimization. The L2 norm tends to yield solutions with all coordinates non-zero, as it does not penalize small adjustments effectively. In contrast, the L1 norm encourages sparsity by requiring significant changes in non-zero coordinates to achieve a lower penalty, making it a preferred choice for sparse solutions. Ultimately, while L1 can lead to sparse solutions, the effectiveness depends on the alignment of the solution set with the geometric shapes defined by the norms.
fog37
Messages
1,566
Reaction score
108
TL;DR Summary
Understand why L0 and L1 lead to the sparsest solution of a linear system of equations
Hello,

I think I understand the different types of norms that we can calculate for a vector living in a finite dimensional space. Each norm has its own benefits.

In 2D, for simplicity, all vectors with the same ##L2## norm are points on a circle (the isoline). All vectors with the same ##L1## are points on the diamond with vertices on the axes. and all vectors with the same ##L0## are points on

Question: what is the concept of regularization penalty that I have read about in regards to norms?

Question: in solving an underdetermined system of linear equations (more unknown that equations), why does looking looking for the ##l-1## norm promotes finding the sparsest solution?
For example, in the figure below, the black straight line represents all possible and infinite solutions of the underdetermined system. We need to find a solution (which is where it the ball touches the black line) which is required to be sparse...The ##L1## solution is the sparsest since it has only one nonzero coordinate... But doesn't it all depend on the position of the black line of solutions? For example, the solution black line could be positioned in such a way that it perfectly overlaps one of the sides of the diamond. Or the black line could touch the circle (L2) where the solution is sparse if the black line was vertical or horizontal...I am confused...

1652022831296.png


The best norm, when looking for the sparsest solution of a system, is the L0 norm but it does not actually satisfy the property of being convex...
 
Mathematics news on Phys.org
For the ##L_0## norm the penalty function is literally the number of nonzero elements, so it has to give the sparsest solution possible.

The ##L_2## norm has the property that the partial derivative with respect to any coordinate at 0 is 0, so if you have some coordinate that is non zero and some coordinate that is zero, you generally can modify the 0 coordinate by a lot, in exchange for making the nonzero coordinate only a little smaller, and still reduce the penalty function. The ##L_2## norm basically guarantees that every coordinate is nonzero, because there's no penalty for making that happen just a little bit.

The only time you get a zero coordinate is when changing it doesn't let you modify the other coordinates at all, which corresponds to when the solution set happens to be a vertical or horizontal line in your diagram.

The ##L_1## norm sits in the middle. If you have a coordinate whose value is 0, you have to increase it by less than the amount you can decrease all the other coordinates in order to make your penalty function smaller. For example if you consider solutions to ##x-2y=1##, for every unit that I change ##x## by, I only have to change ##y## by 0.5 units. So if I have a random solution, say ##x=19## and ##y=9##, I know if I move ##x## to make it smaller, then even if that ends up making ##y## larger, the ##L_1## norm is guaranteed to decrease. This means I might as well make ##x## zero.

In general the only time you don't get to win to this is when you have something like ##x+y=1## which corresponds to the solution set being parallel to the face of the unit ball like you observed.

Notice that even when the ##L_2## norm finds a solution with one zero in it, the ##L_1## norm finds it also. And when the ##L_1## norm doesn't guarantee finding a sparse solution, the ##L_2## norm yields the least sparse solution possible (both coordinates being equal), and the sparse solution of one zero coordinate is at least one of the possible ##L_1## minimizing solutions.
 
  • Like
Likes mfb and fog37
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top