Difficulty checking group axioms

R136a1
Messages
343
Reaction score
53
Let ##G## be a set equipped with a binary associative operation ##\cdot##.

In both of the following situations, we have a group:

1) ##G## is not empty, and for all ##a,b\in G##, there exists an ##x,y\in G## such that ##bx=a## and ##yb=a##.

2) There exists a special element ##e\in G## such that ##xe = x## for all ##x##. And (if we fix this ##e##), then for each ##x\in G##, there exists some ##x^\prime \in G## such that ##xx^\prime = e##.

For reference, ##G## equipped with a binary associative operation is a group if there exists an element ##e\in G## such that ##xe=ex=x##. And for any ##x\in G##, there is an ##x^\prime\in G## such that ##xx^\prime = x^\prime x = e##.

I've been thinking for hours and I really can't seem to figure out why either (1) or (2) forms a group.

It is easy to show that if we have a group, then ##(1)## and ##(2)## hold.

Furthermore, I know that if ##(1)## holds, then ##(2)## holds as well. Indeed, take ##a## a special element, then we can find an ##e## such that ##ae=a## (for this special ##a##). Now, take ##b## arbitrary, then there is an ##x## such that ##b = xa = xae = be##. So we have found the right element ##e##. The existence of ##x^\prime## for every ##x## is now obvious.

So it suffices to show that ##(2)## implies that we have a group. But I really can't figure it out.
 
Physics news on Phys.org
Certainly, it is true that if either (1) or (2) holds, we have an identity and each element has an inverse. So the only thing left is the "associative law" for any a, b, and c in the set, (ab)c= a(bc). I don't see how that follows from (2).
 
Associative is given, so there is no need to check that.

I don't see why we have an identity, if ##(2)## holds. Sure, we have that ##xe= x## and ##xx^\prime = e##. But why do we also have ##ex= x## and ##x^\prime x = e##?
 
Just for clarity - you want to show that given a right inverse, a right identity element, and associativity (conditions 1 and 2) that each member of a group i) commutes with its own right inverse and that ii) commutes with the right identity element?
 
Awesome! Thanks a lot. That was a pretty annoying problem, haha.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Replies
3
Views
445
Replies
13
Views
579
Replies
9
Views
2K
Replies
14
Views
3K
Replies
2
Views
1K
Replies
2
Views
2K
Replies
19
Views
2K
Back
Top