How Does Diffusion Affect Electron Density in a Solar Cell?

Otterhoofd
Messages
8
Reaction score
0

Homework Statement


You have a solar cell with a constant electron density n, and known dimensions. I am looking for the change in density due to diffusion, so basically the diffusion current. All other relevant parameters are also known (temperature, D diffusion constant, etc.)

To summarize the problem: I have a cube with electron density n, outside electron density 0. Question: what is \frac{dn}{dt} due to diffusion?

Homework Equations


Fick's Law: J = - D \times \frac{dn}{dx}
Or root mean square distance traveled by brownian motion:
\Delta x_{rms} = \sqrt{2\times D \times t}

The Attempt at a Solution


Using Fick's law, you get a infinite current since there is a concentration step from n inside to 0 outside the device. However, i think that Ficks law does not hold for this steep concentration gradients. Maybe one could solve this using equipartition of energy? But then again, the exercise hints at the use of the diffusion parameter and says the question should be simple to answer.

Any help would be greatly appreciated. Thank you.
 
Physics news on Phys.org
Hint: There's a more useful equation than Fick's first law.
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top