MHB Diffusion Equation Invariant to Linear Temp. Transform

Dustinsfl
Messages
2,217
Reaction score
5
Show the diffusion equation is invariant to a linear transformation in the temperature field
$$
\overline{T} = \alpha T + \beta
$$
Since $\overline{T} = \alpha T + \beta$, the partial derivatives are
\begin{alignat*}{3}
\overline{T}_t & = & \alpha T_t\\
\overline{T}_{xx} & = & \alpha T_{xx}
\end{alignat*}
So $T_t = \frac{1}{\alpha}\overline{T}_t$ and $T_{xx} = \frac{1}{\alpha}\overline{T}_{xx}$.
The diffusion equation is
$$
\frac{1}{\alpha}T_t = T_{xx}.
$$
By substitution, we obtain
$$
\frac{1}{\alpha}\overline{T}_t = \overline{T}_{xx}.
$$
Correct?
 
Physics news on Phys.org
Yes, as the set of solutions of such an equation is a vector space which contains constant functions.
 
girdav said:
Yes, as the set of solutions of such an equation is a vector space which contains constant functions.

So that is all that it was? It seems to simple.
 
It may be for example the first question of a homework or a test, so it's not necessarily difficult. (maybe maybe the other question can be harder)
 
dwsmith said:
So that is all that it was? It seems to simple.
Yes, it may be simple (in this case) but there's a deeper meaning. It means, given one solution $T_0$, you can construct a second solution $T = \alpha T_0 + \beta$.

You might also want to check that this same PDE is invariant under the change of variables

$\bar{t} = k^2 t,\;\;\; \bar{x} = k x$

i.e.

$ T_{\bar{t}}=\alpha T_{\bar{x} \bar{x}} \;\; \implies \;\; T_t = \alpha T_{xx}$.

The next question $-$ how is this useful?
 
There is the following linear Volterra equation of the second kind $$ y(x)+\int_{0}^{x} K(x-s) y(s)\,{\rm d}s = 1 $$ with kernel $$ K(x-s) = 1 - 4 \sum_{n=1}^{\infty} \dfrac{1}{\lambda_n^2} e^{-\beta \lambda_n^2 (x-s)} $$ where $y(0)=1$, $\beta>0$ and $\lambda_n$ is the $n$-th positive root of the equation $J_0(x)=0$ (here $n$ is a natural number that numbers these positive roots in the order of increasing their values), $J_0(x)$ is the Bessel function of the first kind of zero order. I...
Are there any good visualization tutorials, written or video, that show graphically how separation of variables works? I particularly have the time-independent Schrodinger Equation in mind. There are hundreds of demonstrations out there which essentially distill to copies of one another. However I am trying to visualize in my mind how this process looks graphically - for example plotting t on one axis and x on the other for f(x,t). I have seen other good visual representations of...

Similar threads

Replies
2
Views
2K
Replies
2
Views
1K
Replies
2
Views
2K
Replies
1
Views
3K
Replies
9
Views
2K
Replies
3
Views
3K
Back
Top