A Dirac comment on tensor densities (Dirac GTR, p. 37)

  • A
  • Thread starter Thread starter Kostik
  • Start date Start date
  • Tags Tags
    Density Tensor
Kostik
Messages
269
Reaction score
32
TL;DR Summary
Dirac comment on tensor densities (Dirac GTR, p. 37) -- why is ##\int T^{\mu\nu}\sqrt{-g}d^4 x## invariant?
Dirac (GTR, p. 37) shows simply that for a scalar function ##S##
$$\int S\sqrt{-g}\,d^4 x = \int S'\sqrt{-g'}\,d^4 x'$$ and this works precisely because ##S=S'## for a scalar. But for a tensor ##T^{\mu\nu}## the same procedure gives
$$\int T^{\mu\nu}\sqrt{-g} \, d^4 x = \int x^\mu_{\,\, ,\alpha'}x^\nu_{\,\, ,\beta'}T^{\alpha'\beta'}\sqrt{-g'}\,d^4 x' .$$ Dirac defines a "density" (such as ##S\sqrt{-g}##) as a quantity whose integral is invariant. But clearly $$\int T^{\mu\nu}\sqrt{-g}\,d^4 x \neq \int T^{\mu'\nu'}\sqrt{-g'}\,d^4 x' $$ because of the ##x^\mu_{\,\, ,\alpha'}x^\nu_{\,\, ,\beta'}## terms. What am I missing here? Thanks in advance.

Edit: I realize I am somewhat confused here. Is there some way to write this:
$$\int T^{\mu\nu}\sqrt{-g}\,d^4 x = \int T^{\alpha'\beta'}x^\mu_{\,\, ,\alpha'}x^\nu_{\,\, ,\beta'}\sqrt{-g'}\,d^4 x' = \int \left[ T^{\mu\nu} \right]^{'} \sqrt{-g'}\,d^4 x'\quad??$$ I hesitate to write ##T^{\mu'\nu'}## in the last term, because the ##\mu##'s and ##\nu##'s should balance.
 
Last edited:
Physics news on Phys.org
So the first thing you should ask yourself is: "Does the expression make sense at all?"
What does
$$
\int T^{\mu\nu} \sqrt{-g}\, d^4x
$$
actually mean? In essence, you are adding together tensor components from different parts of your spacetime and this generally holds no particular meaning. The tensors belong to different tensor spaces and so the expression is generally meaningless.

The only way that you can provide the expression with meaning is if you have a flat spacetime, e.g., Minkowski space, where there is a unique identification between the tangent spaces of different events. Once we have concluded that, we should also note that what then makes sense is to integrate a tensor itself, not only its components, i.e.,
$$
\int T^{\mu\nu} e_{\mu\nu} \sqrt{-g}\, d^4 x
$$
where ##e_{\mu\nu}## is the tensor basis.

The only way you can be left with only the tensor components inside the integral is if the basis is constant and can be taken outside of the integral. If you are using coordinate bases, this only happens if your coordinate system is affine - effectively restricting you to different inertial frames on Minkowski space (there are some other affine systems of course, such as non-orthonormal ones, but that's a detail - if not for that detail, you would always have ##-g = 1## and could remove that from the expression).

Given the above, what you really expect is that the result of the integral should be the components of a rank 2 tensor under Lorentz transformations, which exactly follows the transformation properties that you found. You should not expect a tensor to have the same components in different inertial frames.

Edit: Note: This is a general reply. I do not have access to Dirac's text so I cannot comment directly to what he says.
 
Dirac already addressed this: he said "...is a tensor if the domain of integration is very small. It is not a tensor if the domain of integration is not small, because then it consists of a sum of tensors located at different points..."

Apologies I omitted this excerpt, assuming a reader might open to the relevant page.
 
If the domain is small enough for curvature to be negligible, then - locally - as always, you have Minkowski space and the above applies.
 
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
So, to calculate a proper time of a worldline in SR using an inertial frame is quite easy. But I struggled a bit using a "rotating frame metric" and now I'm not sure whether I'll do it right. Couls someone point me in the right direction? "What have you tried?" Well, trying to help truly absolute layppl with some variation of a "Circular Twin Paradox" not using an inertial frame of reference for whatevere reason. I thought it would be a bit of a challenge so I made a derivation or...
I started reading a National Geographic article related to the Big Bang. It starts these statements: Gazing up at the stars at night, it’s easy to imagine that space goes on forever. But cosmologists know that the universe actually has limits. First, their best models indicate that space and time had a beginning, a subatomic point called a singularity. This point of intense heat and density rapidly ballooned outward. My first reaction was that this is a layman's approximation to...
Back
Top