Dirac Delta Function - Fourier Series

Click For Summary
The discussion focuses on finding the Fourier series for the function f(x) = δ(x) - δ(x - 1/2) within the interval -1/4 < x < 3/4. The Fourier coefficients are calculated, revealing that a_0 = 0, a_n = 2 - 2cos(nπ/2), and b_n = -2sin(nπ/2). The coefficients indicate specific behaviors for odd and even n values, impacting the series' convergence. Simplifications using trigonometric identities are suggested to express the series more clearly.
BOAS
Messages
546
Reaction score
19

1. Homework Statement

Find the Fourier series of

##f(x) = \delta (x) - \delta (x - \frac{1}{2})## , ## - \frac{1}{4} < x < \frac{3}{4}##
periodic outside.

Homework Equations


[/B]
##\int dx \delta (x) f(x) = f(0)##

##\int dx \delta (x - x_0) f(x) = f(x_0)##

The Attempt at a Solution


[/B]
I am struggling to visualise this function, which is making it hard to tell if my series makes sense. Plus I find the delta function a little confusing to reason about.

The function has a period of 1.

##a_0 = 2 \int^{3/4}_{-1/4} \delta (x) dx - 2 \int^{3/4}_{-1/4} \delta (x - \frac{1}{2}) dx = 0##

##a_n = 2 \int^{3/4}_{-1/4} \delta (x) \cos (n \pi x) dx - 2 \int^{3/4}_{-1/4} \delta (x - \frac{1}{2}) \cos (n \pi x)dx = 2 - 2 \cos (\frac{n \pi}{2})##

##b_n = 2 \int^{3/4}_{-1/4} \delta (x) \sin (n \pi x) dx - 2 \int^{3/4}_{-1/4} \delta (x - \frac{1}{2}) \sin (n \pi x) dx = -2 \sin (\frac{n \pi}{2})##

I think those are my Fourier coefficients, and I couldn't find a nice way to express them, so I think they're ok left as trig functions.

Does it look ok?

 
Physics news on Phys.org
cos(\frac{n\pi}{2}) is 0 if n is odd, 1 if n is an even multiple of 2 and -1 if n is an odd multiple of 2. Sin(x) is 0 if n is even, 1 if n is of the form 4k+1 for some k and -1 if it is of the form 4k-1 for some k. So \sum_{n= 0}^\infty(2- 2cos(\frac{n\pi}{2})cos(n\pi x)+ 2 sin(\frac{n\pi}{2})sin(n\pi x)= \sum_{n=0}^\infty [(2- 2(-1)^{n})cos(2n\pi x)+ 2(-1)^n sin(((2n+1)/2]\pi x)]
 
  • Like
Likes BOAS
HallsofIvy said:
cos(\frac{n\pi}{2}) is 0 if n is odd, 1 if n is an even multiple of 2 and -1 if n is an odd multiple of 2. Sin(x) is 0 if n is even, 1 if n is of the form 4k+1 for some k and -1 if it is of the form 4k-1 for some k. So \sum_{n= 0}^\infty(2- 2cos(\frac{n\pi}{2})cos(n\pi x)+ 2 sin(\frac{n\pi}{2})sin(n\pi x)= \sum_{n=0}^\infty [(2- 2(-1)^{n})cos(2n\pi x)+ 2(-1)^n sin(((2n+1)/2]\pi x)]

Thanks a lot.

That's incredibly helpful and clear.
 
BOAS said:
##a_0 = 2 \int^{3/4}_{-1/4} \delta (x) dx - 2 \int^{3/4}_{-1/4} \delta (x - \frac{1}{2}) dx = 0##

##a_n = 2 \int^{3/4}_{-1/4} \delta (x) \cos (n \pi x) dx - 2 \int^{3/4}_{-1/4} \delta (x - \frac{1}{2}) \cos (n \pi x)dx = 2 - 2 \cos (\frac{n \pi}{2})##

##b_n = 2 \int^{3/4}_{-1/4} \delta (x) \sin (n \pi x) dx - 2 \int^{3/4}_{-1/4} \delta (x - \frac{1}{2}) \sin (n \pi x) dx = -2 \sin (\frac{n \pi}{2})##

I think those are my Fourier coefficients, and I couldn't find a nice way to express them, so I think they're ok left as trig functions.
You can also use some trig identities to simplify
$$a_n \cos n\pi x + b_n \sin n\pi x = 2\cos (n\pi x) - 2 \left[\cos \left( \frac{n \pi}{2}\right) \cos (n\pi x) + \sin \left(\frac{n \pi}{2}\right) \sin (n\pi x) \right]$$ to get
$$-4 \sin \frac{n \pi}{4} \sin\left[n\pi \left(x - \frac 14\right) \right]$$
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

Replies
1
Views
2K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 31 ·
2
Replies
31
Views
4K
  • · Replies 40 ·
2
Replies
40
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 105 ·
4
Replies
105
Views
6K