- #1

n00neimp0rtnt

- 15

- 0

## Homework Statement

Show that if a, b, c, and d are integers such that a | c and b | d, then ab | cd.

Let m be a positive integer. Show that a mod m = b mod m if a ≡ b(mod m)

## Homework Equations

| means "divides," so a | b means "a divides b" or "b can be divided by a"

mod gets the remainder; a mod m means "the remainder after m is divided by a"

≡ means "is congruent to"

## The Attempt at a Solution

For the proof of the first one, I can easily substitute real values:

a = 4

b = 3

c = 16

d = 9

and from that I would get

(4)(3) | (16)(9)

12 | 144

which is obviously 12, for which the statement holds true; however, since this is a universal proof and not an existential one, that statement is far from enough to prove it.

For the proof of the second statement, I am unsure about how to treat a congruency in a proof like this.

Proofs are probably my weakest point in this course, so thanks in advance for any help.