Engineering Discover the Stability of the System through a Visualization | Learn More

AI Thread Summary
The discussion centers on determining the stability of a polynomial using the Routh-Hurwitz criterion. The critical value for k is identified as -1/2, indicating that for stability, k must be greater than -1/2 to avoid sign changes in the Routh array. However, it is noted that the correct answer for stability is k > -2. The polynomial's coefficients are analyzed, revealing that for the roots to have negative real parts, the conditions require k to be greater than -1. Overall, the conversation emphasizes the importance of applying the Routh-Hurwitz criterion correctly to assess system stability.
engnrshyckh
Messages
51
Reaction score
2
Homework Statement
For what value of k does the polynomial shown in picture have roots with negative real parts
Relevant Equations
Rooth array criteria
See the picture
I am stuck at 12(1+2k)=0
So k=-1/2 for stability k must have value greater the - 1/2 which means there will no sign changes in rooth array and equation represents a stable system
 

Attachments

  • IMG_20200409_131514.jpg
    IMG_20200409_131514.jpg
    46.4 KB · Views: 197
  • IMG_20200409_131402.jpg
    IMG_20200409_131402.jpg
    34.1 KB · Views: 195
Physics news on Phys.org
engnrshyckh said:
Homework Statement:: For what value of k does the polynomial shown in picture have roots with negative real parts
Relevant Equations:: Rooth array criteria

See the picture
I am stuck at 12(1+2k)=0
So k=-1/2 for stability k must have value greater the - 1/2 which means there will no sign changes in rooth array and equation represents a stable system
But correct ans is k>-2
 
engnrshyckh said:
Homework Statement:: For what value of k does the polynomial shown in picture have roots with negative real parts
Relevant Equations:: Rooth array criteria

See the picture
I am stuck at 12(1+2k)=0
So k=-1/2 for stability k must have value greater the - 1/2 which means there will no sign changes in rooth array and equation represents a stable system
First off, the name is Routh. I've never heard of this algorithm, but I found something about Routh-Hurwitz stability at this wiki page - https://en.wikipedia.org/wiki/Routh–Hurwitz_stability_criterion

In the section titled Routh–Hurwitz criterion for second and third order polynomials, it says,
The third-order polynomial
##P ( s ) = s^3 + a_2 s^2 + a_1 s + a_0## has all roots in the open left half plane if and only if
##a_2 , a_0## are positive and ##a_2 a_1 > a_0## .
In your problem, ##a_2 = 4 + 4k, a_1 = 6, a_0 = 12##
The solution to both inequalities is k > -1, so it seems to me that the closest of the given answers is k > -2.
 
Thread 'How do I determine the resistance for RLC low pass filter?'
Hi, I am trying to build a RLC low pass filter that atenuates the frequency below 4500 Hz. However, I have encountered some problem when choosing the correct R to work with. Here is the Circuit Here is the original sound. Here is my code in Matlab function Vout = myFilterCircuit(Vin,h) n_V = length(Vin); f_7 = 4470;; % Undesired frequency h_7 = h; % delta time % These are for the constant and initialization of the variables t_7 = 0:h_7:(n_V-1)*h_7; % This is the independent variable...
Thread 'Have I solved this structural engineering equation correctly?'
Hi all, I have a structural engineering book from 1979. I am trying to follow it as best as I can. I have come to a formula that calculates the rotations in radians at the rigid joint that requires an iterative procedure. This equation comes in the form of: $$ x_i = \frac {Q_ih_i + Q_{i+1}h_{i+1}}{4K} + \frac {C}{K}x_{i-1} + \frac {C}{K}x_{i+1} $$ Where: ## Q ## is the horizontal storey shear ## h ## is the storey height ## K = (6G_i + C_i + C_{i+1}) ## ## G = \frac {I_g}{h} ## ## C...
Back
Top