Faraday: v = -N*d(phi)/dt.
Ohm: J = sigma*E.
Lorentz: F = q*(E + uXB).
The induced voltage is described in Faraday's Law, FL. But we must be careful. A time changing mag flux is related to the emf (voltage) induced in the loop per FL. But the flux "phi" is a net flux, not the external flux exciting the loop.
When the time varying, herein "ac", mag flux phi, excited the loop, there is charge motion per Lorentz force law, LFL. Free electrons in the wire are moved in a direction determined by E & B. E acts tangentially, B acts normally. Hence a rotational field condition is present & the electrons circulate around the loop. But hold on. The moving e- constitute a current, which produces another mag field. If the external mag flux density is called "Be", & internal is "Bi", then Bnet = B = Be + Bi. Of course, the law of Lenz, LL, tells us that the induced or internal B field opposes the external B in polarity.
In addition, we have another thing going on. As e- transit through the wire, they crash into lattice particles & lose some energy. This energy is radiated in the form of photon emission. It is around 5 to 7 micron in wavelength, & is felt as heat in the infrared region. Charges accumulate due to said collisions, & these charges have their own associated E field, since e- carry E fields due to their own charge.
This accumulation of e- charge gives rise to an ir-rotational (conservative) E field. This E field has no curl & is not an emf, but a drop. It is a polarizing type of force, its curl is zero, as it can not drive electrons around the closed loop.
So what is the voltage? How is it determined? The voltage V, is simply the line integral along a particular path of E*dl. But E has 3 components, the induced E field due to external B, the E field due to the current in the wire & its ac B field, Bi, & the static ir-rotational E field due to charge accumulation incurred via electron collisions w/ the lattice structure.
The voltage from a to b, is the line integral of the composite E fields along a chosen path. Inside the Cu wire, what is the voltage value, Vcu? We are measuring voltage from terminals a & b, w/ the path as the inside of the Cu winding.
The external ac mag flux density Be, gives rise to an induced E field, Ee, such that electrons in the Cu wire are moved along the wire, w/ said Be acting normal. This Ee is rotational.
But the induced current, Iloop, has its own B field, ac, we will call Bi. Bi is an ac field, & it has the opposite polarity of Be. It induces an E field & voltage or emf in the loop. This is the self-inductance of the loop. This is Ei, also rotational. For a very low loop resistance, the Bi cancels the Be almost entirely. What remains is the E field due to charges accumulating due to collisions between electrons & lattice structure. Call this one Ec. as it is due to charged particles.
Hence Enet = E = Ee + Ei + Ec. But Ee & Ei nearly cancel perfectly inside a low resistance conductor. If the loop were open, Ei tends toward zero, & the loop voltage is maximum due to no cancelling between Ee & Ei. Closing the loop via a resistive load results in current & a counter-balancing E & B fields, Ei & Bi. So inside the copper we still have Ec. If the entire loop was very low resistance so that Ee & Ei nearly cancel entirely, we still have Ec.
The Cu sec winding in my example is 0.1 ohm. The 10A current times the 0.1 ohm results in the voltage drop of 1.0V. The line integral of the composite E field along the Cu path results in Ee & Ei almost cancelling, & Ec*dl giving us around 1.0V. In other words, as soon as the ext mag field, Be, enters the Cu wire, current is induced. The induced current has a strong B field, Bi, that cancels the external, & equilibrium is reached.
You seem to be looking for the 120V induced emf inside the copper in distributed form. But don't forget that there is a counter-emf generated as well. The distributed emf sources are nearly perfectly canceled by the distributed counter-emf sources. But the Ec component does not get cancelled. It accounts for the 1.0V drop inside the Cu.
To better visualize this, consider a low resistance loop of wire, 0.010 ohm, closed & immersed in an ac mag field, Be. The Lorentz force moves the free electrons in the wire. This is current. But the current generates its own mag field, Bi. The law of Lenz tells us that they oppose each other. If the current is 1.0A, w/ a 0.010 ohm loop resistance, the voltage around the loop is 0.010 volt.
But we now open the loop, keeping the flux & area the same. The current plummets to near zero, but the voltage increases to 10V. Here, the ac mag flux produces an induced emf of 10V in the open state. When the loop closes, the net loop voltage is a mere 0.010V.
Why the difference? Of course, it is the cancellation. The external & internal parts of B & E account for the drastic difference in voltage between high & low impedance conditions. With a high-Z loop, the external B field is unopposed. Without induced current, the E field is due to the external B field, & the full voltage is realized since there is no loop current to cancel it.
When the loop resistance is low, the current generates cancellation of the external fields. The voltage is the line integral of all 3 phenomena. How can the Cu wire have just 1.0V, when the heater load has 119V, when their paths start & end at the same 2 points, a & b? They are in parallel, yet differing voltages are found.
Why? Answer is cancellation, & charge accumulation due to differing resistance values. I believe I've made my case, but someone other than me should affirm.
Claude