I Displacement operation acting on individual quadrature components

waadles
Messages
1
Reaction score
0
Hi all,

I have a naive understanding of how operators work and wondered if someone could help me. I have tried to understand this myself, but alas, I think my knowledge is too premature to understand what I am reading online. Is someone able to explain?

I want to perform the operation ##D(\alpha)^\dagger X D(\alpha)##, where ##X## is one of the quadrature components ##X = \frac{1}{\sqrt{2}} (a + a^\dagger)##. I know the following:

$$
D(\alpha)^\dagger a D(\alpha) = a + \alpha
$$

Does this mean ##D(\alpha)^\dagger a^\dagger D(\alpha) = a^\dagger + \alpha^*##?

If so, then:

$$
D(\alpha)^\dagger X D(\alpha) = \frac{1}{\sqrt{2}} D(\alpha)^\dagger (a + a^\dagger) D(\alpha) = \frac{1}{\sqrt{2}} (a + a^\dagger + 2|\alpha|)
$$

This is not correct. I would have expected something like ##\frac{1}{\sqrt{2}} (a + a^\dagger + |\alpha|)##.

I am struggling even more to work out ##P##, where ##P = \frac{i}{\sqrt{2}} (a - a^\dagger)##. I get:

$$
D(\alpha)^\dagger P D(\alpha) = \frac{1}{\sqrt{2}} D(\alpha)^\dagger (a - a^\dagger) D(\alpha) = \frac{1}{\sqrt{2}} (a - a^\dagger)
$$

and it remains the same, which is not correct. I would also expect ##\frac{1}{\sqrt{2}} (a - a^\dagger + |\alpha|)##.

Can someone tell me where I am going wrong?

I appreciate any help you can provide.
 
Last edited:
Physics news on Phys.org
Since operator a is not Hermitian, I am not sure and accoustomed to translational operation on it. Is it an exercise on textbook ?
 
waadles said:
Hi all,

I have a naive understanding of how operators work and wondered if someone could help me. I have tried to understand this myself, but alas, I think my knowledge is too premature to understand what I am reading online. Is someone able to explain?

I want to perform the operation ##D(\alpha)^\dagger X D(\alpha)##, where ##X## is one of the quadrature components ##X = \frac{1}{\sqrt{2}} (a + a^\dagger)##. I know the following:

$$
D(\alpha)^\dagger a D(\alpha) = a + \alpha
$$

Does this mean ##D(\alpha)^\dagger a^\dagger D(\alpha) = a^\dagger + \alpha^*##?
That follows by taking the Hermitian conjugate of the equation.
waadles said:
If so, then:

$$
D(\alpha)^\dagger X D(\alpha) = \frac{1}{\sqrt{2}} D(\alpha)^\dagger (a + a^\dagger) D(\alpha) = \frac{1}{\sqrt{2}} (a + a^\dagger + 2|\alpha|)
$$
Note that ##\alpha + \alpha^* = 2Re(\alpha)##.
waadles said:
This is not correct. I would have expected something like ##\frac{1}{\sqrt{2}} (a + a^\dagger + |\alpha|)##.
Why did you expect that?
waadles said:
I am struggling even more to work out ##P##, where ##P = \frac{i}{\sqrt{2}} (a - a^\dagger)##. I get:

$$
D(\alpha)^\dagger P D(\alpha) = \frac{1}{\sqrt{2}} D(\alpha)^\dagger (a - a^\dagger) D(\alpha) = \frac{1}{\sqrt{2}} (a - a^\dagger)
$$
In this case you should use ##\alpha - \alpha^* = 2iIm(\alpha)##.
 
PeroK said:
In this case you should use α−α∗=2iIm(α).
May we say about meaning of translation of a as
\alpha=\frac{d_x}{\sqrt{2}}-i\frac{d_p}{\sqrt{2}}
where d_x and d_p are displacement in coordinate and momentum space ?
If so it holds for the translated Hamiltoian, i.e.
(a^{\dagger} +\alpha^*)(a+\alpha)+\frac{1}{2}? It seems not obvious to me.
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...

Similar threads

Replies
3
Views
2K
Replies
0
Views
2K
Replies
3
Views
2K
Replies
4
Views
2K
Replies
0
Views
1K
Replies
6
Views
2K
Back
Top