MHB Distance between points question

  • Thread starter Thread starter Yankel
  • Start date Start date
  • Tags Tags
    Points
Yankel
Messages
390
Reaction score
0
Hello

I have two points: B(1,3) and C(2,6). I need to find a point A on the y-axis, from which BC is "seen" at an angle of 90 degrees.

I tried using Pythagoras theorem and got:

\[y^{2}-6y+10=y^{2}-12y+40+10\]

but it doesn't give the correct answer, which is (0,5) or (0,4).

What am I doing wrong here ?

Thank you in advance !
 
Mathematics news on Phys.org
Yankel said:
from which BC is "seen" at an angle of 90 degrees.

Can you make that precise?
 
Yankel said:
Hello

I have two points: B(1,3) and C(2,6). I need to find a point A on the y-axis, from which BC is "seen" at an angle of 90 degrees.

I tried using Pythagoras theorem and got:

\[y^{2}-6y+10=y^{2}-12y+40+10\]

but it doesn't give the correct answer, which is (0,5) or (0,4).

What am I doing wrong here ?

Thank you in advance !

Here's what I would do:

Let the requested point be $P(0,y)$. Now we require segment $\overline{BP}$ to be normal to segment $\overline{CP}$, and so we require (given the product of the slopes of normal lines is -1):

$$\frac{3-y}{1-0}=\frac{0-2}{6-y}$$

$$(y-3)(y-6)=-2$$

$$y^2-9y+20=0$$

$$(y-4)(y-5)=0$$

Thus:

$$y\in\{4,5\}$$
 
when I draw it, it looks like BP is normal to BC and not CP. This is why my answer is wrong. How could you tell which line is normal to which ?
 
Yankel said:
when I draw it, it looks like BP is normal to BC and not CP. This is why my answer is wrong. How could you tell which line is normal to which ?

The line segments from our point $P$ on the $y$-axis to the two given points must be normal to each other. :D
 
While I was drawing, I didn't keep the same scale on the x-axis and y-axis, and this is why in my drawing the angle did not look like 90 degrees. I understand the error now.

Thank you !
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top