1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Divergence of Energy-momentum Tensor

  1. Oct 16, 2011 #1
    How do you prove that Maxwell's energy-momentum equation is divergence-free?
    I don't know whether or not I have to use Lagrangians or Eistein's tensor, or if there's a simlpler way of expanding out the tensor..

    ∂[itex]_{\mu}[/itex]T[itex]^{\mu\nu}[/itex]=0

    T[itex]^{}\mu\nu[/itex]=F[itex]^{}\mu\alpha[/itex]F[itex]^{}\nu[/itex][itex]_{}\alpha[/itex]-1/4F[itex]^{}\alpha\beta[/itex]F[itex]_{}\alpha\beta[/itex][itex]\eta[/itex][itex]^{}\mu\nu[/itex]
     
  2. jcsd
  3. Oct 16, 2011 #2
    I mean

    ∂[itex]_{\mu}[/itex]T[itex]^{\mu\nu}[/itex]=0

    T[itex]^{\mu\nu}[/itex]=F[itex]^{\mu\alpha}[/itex]F[itex]^{\nu}[/itex][itex]_{\alpha}[/itex]-1/4F[itex]^{\alpha\beta}[/itex]F[itex]_{\alpha\beta}[/itex][itex]\eta[/itex][itex]^{\mu\nu}[/itex]
     
  4. Oct 16, 2011 #3

    vela

    User Avatar
    Staff Emeritus
    Science Advisor
    Homework Helper
    Education Advisor

    Try writing [itex]F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu[/itex] and using the commutativity of the derivatives.
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook




Similar Discussions: Divergence of Energy-momentum Tensor
Loading...