Divergence of Energy-momentum Tensor

  • #1
How do you prove that Maxwell's energy-momentum equation is divergence-free?
I don't know whether or not I have to use Lagrangians or Eistein's tensor, or if there's a simlpler way of expanding out the tensor..

∂[itex]_{\mu}[/itex]T[itex]^{\mu\nu}[/itex]=0

T[itex]^{}\mu\nu[/itex]=F[itex]^{}\mu\alpha[/itex]F[itex]^{}\nu[/itex][itex]_{}\alpha[/itex]-1/4F[itex]^{}\alpha\beta[/itex]F[itex]_{}\alpha\beta[/itex][itex]\eta[/itex][itex]^{}\mu\nu[/itex]
 

Answers and Replies

  • #2
I mean

∂[itex]_{\mu}[/itex]T[itex]^{\mu\nu}[/itex]=0

T[itex]^{\mu\nu}[/itex]=F[itex]^{\mu\alpha}[/itex]F[itex]^{\nu}[/itex][itex]_{\alpha}[/itex]-1/4F[itex]^{\alpha\beta}[/itex]F[itex]_{\alpha\beta}[/itex][itex]\eta[/itex][itex]^{\mu\nu}[/itex]
 
  • #3
vela
Staff Emeritus
Science Advisor
Homework Helper
Education Advisor
14,659
1,292
Try writing [itex]F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu[/itex] and using the commutativity of the derivatives.
 

Related Threads on Divergence of Energy-momentum Tensor

Replies
1
Views
794
Replies
16
Views
4K
Replies
3
Views
1K
  • Last Post
Replies
7
Views
2K
Replies
0
Views
2K
  • Last Post
Replies
4
Views
1K
  • Last Post
Replies
3
Views
1K
Replies
4
Views
1K
Replies
1
Views
882
Replies
0
Views
5K
Top