I Do EM waves have negative frequency inside negative-index materials?

  • I
  • Thread starter Thread starter jeast
  • Start date Start date
  • Tags Tags
    Em waves
Click For Summary
The discussion centers on the relationship between the refractive index of a material and the frequency of electromagnetic waves. It is established that if the refractive index is negative, the frequency of the wave becomes negative as well. The conversation highlights that negative frequencies can occur even in vacuum, particularly in modulated signals and local relativistic fields. The classical interpretation of electromagnetic waves suggests that they are always a superposition of positive and negative frequencies. The thread concludes with a consensus on the reasoning regarding negative frequencies in relation to negative-index materials.
jeast
Messages
10
Reaction score
0
The speed of light in a vacuum, ##c##, is defined as positive.

The refractive index of a material, ##n##, can be positive or negative.

The dispersion relation for light inside the material is given by

$$\omega=\frac{c}{n}|\mathbf{k}|.$$
The magnitude of the wavevector, ##|\mathbf{k}|##, must be positive by definition therefore the sign of the wave frequency ##\omega## is determined solely by the refractive index ##n##.

Thus if the refractive index ##n## is negative then the frequency ##\omega## is negative.

Is this reasoning correct?
 
Physics news on Phys.org
jeast said:
The speed of light in a vacuum, ##c##, is defined as positive.

The refractive index of a material, ##n##, can be positive or negative.

The dispersion relation for light inside the material is given by

$$\omega=\frac{c}{n}|\mathbf{k}|.$$
The magnitude of the wavevector, ##|\mathbf{k}|##, must be positive by definition therefore the sign of the wave frequency ##\omega## is determined solely by the refractive index ##n##.

Thus if the refractive index ##n## is negative then the frequency ##\omega## is negative.

Is this reasoning correct?
You very often get negative frequencies even in vacuum, so sure you can have them in materials too. For example, when you take a signal at baseband and then you modulate it, with e.g. a ##\cos## carrier, the result has both positive frequency and negative frequency components.
And with a quadrature transmitter and detector you can even have a purely negative frequency signal.
 
Last edited:
  • Like
Likes vanhees71 and turo_loler
Any local relativistic field has always wavemmodes with both positive and negative frequencies. The decomposition of free em. waves in plane-wave modes reads (in radiation gauge)
$$\vec{A}(t,\vec{x})=\sum_{\lambda \in \{1,-1\}} \int_{\mathbb{R}^3} \frac{\mathrm{d}^3 k}{(2 \pi)^3} \left [A_{\lambda}(\vec{k}) \vec{\epsilon}_{\lambda}(\vec{k}) \exp(-\mathrm{i} \omega_k t + \mathrm{i} \vec{k} \cdot \vec{x}) + A^*_{\lambda}(\vec{k}) \vec{\epsilon}_{\lambda}^*(\vec{k}) \exp[+\mathrm{i} \omega_k t -\mathrm{i} \vec{k} \cdot \vec{x} \right].$$
Here ##\vec{\epsilon}_{\lambda}(\vec{k})## are orthogonal to ##\vec{k}## and helicitity eigenstates (referring to left- and right-circular polarization) and ##\omega_k=c |\vec{k}|##.
 
  • Like
Likes DrClaude and Dale
Classically, the distinction between positive and negative frequencies makes no sense as an electromagnetic wave is always a superposition ##a\exp(i(\mathbf{kr}-\omega t))+a^*\exp(-i(\mathbf{kr}-\omega t))##.
 
  • Like
Likes Demystifier and vanhees71
It seems this is a good time to close this thread and put the discussion of negative indices and frequencies to rest.

Thank you all for contributing here.

Jedi
 
  • Like
Likes berkeman
For the quantum state ##|l,m\rangle= |2,0\rangle## the z-component of angular momentum is zero and ##|L^2|=6 \hbar^2##. According to uncertainty it is impossible to determine the values of ##L_x, L_y, L_z## simultaneously. However, we know that ##L_x## and ## L_y##, like ##L_z##, get the values ##(-2,-1,0,1,2) \hbar##. In other words, for the state ##|2,0\rangle## we have ##\vec{L}=(L_x, L_y,0)## with ##L_x## and ## L_y## one of the values ##(-2,-1,0,1,2) \hbar##. But none of these...