Do Quadrilateral Diagonals Always Remain Inside or Outside?

AI Thread Summary
In the discussion on quadrilateral diagonals, it is established that each diagonal must either lie entirely inside or outside the quadrilateral. The proof demonstrates that if a diagonal crosses a side of the quadrilateral, it would coincide with that side, violating the uniqueness of straight lines. The conversation also explores the case of a pentagon, where a diagonal can partially lie inside and partially outside, as it can cross a side without sharing two points. This distinction highlights the difference in properties between quadrilaterals and pentagons regarding diagonal placement. The conclusion reinforces the geometric principles governing the behavior of diagonals in these shapes.
Born
Messages
31
Reaction score
1

Homework Statement



Problem 55 from Kiselevś Geometry - Book I. Planimetry: "Prove that each diagonal of a quadrilateral either lies entirely in its interior, or entirely in its exterior. Give an example of a pentagon for which this is false."

Homework Equations

The Attempt at a Solution



The pentagon part is pretty easy. I'm having trouble with the proof. A proof by contradiction seems to be the easiest way to solve this problem but I'd prefer a proof that also explains why this should be true.

I've tried using straight line properties (i.e. a straight line can be formed though any two points and it is unique) but I haven't gottten anywhere.

Thanks in advanced for any help!
 
Last edited:
Physics news on Phys.org
Can you see why the pentagon can break the rule?
If a diagonal breaks the rule, then it must cross one of the sides - that help?
You can also look at the classes of quadrilateral and see how diagonals are formed in each case.
 
Maybe supplementary angles of a transversal are...
 
the diagonal divides the plane in two and contains exactly two of the four points there are two cases both points lie on the same side or each lies on one side
 
Simon, MidgetDwarf, and lurflurf, I think you'll like what I've come up with. I'm sorry to not be able to show some pictures but I believe the written proof will suffice. Hope it's clear enough. Thank you for your help.

The three properties of straight lines in the proof are the following: (1) A straight line can be created from any two points, (2) this line is unique, and (3) if two straight lines coincide at least at two points, all their points coincide (making them the same line).

##\mathrm{Proof:}##

A quadrilateral has four vertices, each vertex point must connect to two others in order to form the sides of the quadrilateral. Labeling these four points A, B, C, and D and forming the following sides AB, BC, CD, and DA we create the quadrilateral ABCD. The diagonals of said quadrilateral will consequently be AC and BD.

If a diagonal were to not lie completely inside or outside the quadrilateral then it (the diagonal) must cross one of the sides of the quadrilateral (either to enter or to exit the figure).

The diagonal AC cannot cross the side AB, DA, BC, or CD because this would imply that the diagonal AD equals the respective side it crosses by property (3) (since AC would coincide with the point of the side it crosses and the point A or C). The same applies to BD and the side AB, DA, BC, or CD.

This implies that the diagonals of a quadrilateral cannot cross its sides.

Therefore the diagonals of a quadrilateral must either lie entirely inside or entirely outside. ##\mathrm{QED}##
 
Last edited:
##\mathrm{Follow\ up:}##

Concerning the pentagon: labeling the five vertex points A, B, C, D, E; and forming the sides AB, BC, CD, DE, and EA. A diagonal is made from point A to point D crossing the side BC. This is possible since the diagonal would only share one point with the side BC- (This is unlike the quadrilateral in which every diagonal would share two points of a side if said diagonal crossed said side)

Therefore a diagonal which lies partially outside and partially inside the figure is possible. ##\mathrm{QED}##
 
Last edited:
I picked up this problem from the Schaum's series book titled "College Mathematics" by Ayres/Schmidt. It is a solved problem in the book. But what surprised me was that the solution to this problem was given in one line without any explanation. I could, therefore, not understand how the given one-line solution was reached. The one-line solution in the book says: The equation is ##x \cos{\omega} +y \sin{\omega} - 5 = 0##, ##\omega## being the parameter. From my side, the only thing I could...
Back
Top