Do you know of any software I can use to graph this equation?

  • Thread starter Thread starter karpmage
  • Start date Start date
  • Tags Tags
    Graph Software
karpmage
Messages
32
Reaction score
0
I thought I'd just quickly tell you guys why I want to graph this equation before giving it you.

We're studying conic sections at the moment, and I started wondering what would happen if I let the directrix be a parabola. I looked at the instance where the directrix is y=x^2. I let the focus, F, be (x_F,y_F). Let P=(x,y) be a point on the curve that I am trying to find. I was wondering what the equation of this curve would be if I said that the distance between P and F and the perpendicular distance between P and the directrix has to be the same for any point P. ie. if we let O be the point where P meets the directrix at right angles, then OP=PF. I shall let O=(x_1,y_1)

The gradient of the directrix at point O has to 2(x_1). Thus the gradient of OP has to be (-1/(2(x_1))). Thus, we can represent O as (x+t, y-(t/(2(x_1))), where t is an unknown variable. Since x_1=x+t, we can further represent O as (x+t, y-(t/(2(x+t))). Substituting these values for x_1 and y_1 back into our equation for the directrix, we get:

y-(t/(2(x+t))=(x+t)^2

I let u=x+t, now: y-(u-x)/(2u)=u^2 => 2uy-(u-x)=u^3 => u^3+(1-2y)u-x=0

I then solve this cubic using Cardano's method (method in the link below) http://www.math.cornell.edu/~henderson/courses/M403-S03/cubics.htm

I get u=(((x/2)+((x/2)^2+((1-2y)/3)^3)^0.5)^(1/3))+(((x/2)-((x/2)^2+((1-2y)/3)^3)^0.5)^(1/3)) thus t=(((x/2)+((x/2)^2+((1-2y)/3)^3)^0.5)^(1/3))+(((x/2)-((x/2)^2+((1-2y)/3)^3)^0.5)^(1/3))-x

I want to show that OP=PF. (PF)^2= (x_F-x)^2 + (y_F-y)^2, and (OP)^2 = (y-y_1)^2 + (x-x_1)^2 = (t/(2(x+t))^2 + t^2

Thus, replacing t in terms of x and y we get: (((((x/2)+((x/2)^2+((1-2*y)/3)^3)^0.5)^(1/3))+(((x/2)-((x/2)^2+((1-2*y)/3)^3)^0.5)^(1/3))-x)^2)*((((x/2)+((x/2)^2+((1-2*y)/3)^3)^0.5)^(1/3))+(((x/2)-((x/2)^2+((1-2*y)/3)^3)^0.5)^(1/3))+1)/(4*((((x/2)+((x/2) ^2+(1-2*y)^3)^0.5)^(1/3))+(((x/2)-((x/2)^2+(1-2*y)^3)^0.5)^(1/3)))^2)-(x_F-x)^2-(y_F-y)^2 = 0

(easier to see equation)
YmiTxhg.png


This is the function that I want to plot. I'm just interested to see what it'd look like. Of course I'd have to replace x_F and y_F with set values. I just want to know if any of you know of software which can plot this equation. I don't want to plot a 3-D graph though, unless I am able to set the value of z to 0.

OR

If you guys know of a way to rearrange this equation so that y becomes the subject, then I can simply use any graphing software to plot the curve.
 
Mathematics news on Phys.org
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top