Opti_mus said:
Thanks for your answer and sorry, 'cause it's totally impossible for me to understand that facts. If I (B in this case) can't define a proper time between 2 facts, even though I can't see one of them, it seems physics are over, in the sense that determinism is over: I can't know by sure if A falls or not into the BH, so I can't make any prediction about the dynamics of A and the BH!
You are confusing yourself by jumping straight into a fairly subtle general relativity problem before understanding how the concepts of proper time and coordinate time work in the much simpler (no gravitational effects, no black holes, no curvature, inertial frames cover the entire universe) case of special relativity.
I'm not sure how far back to start explaining, but I'll try...
There are two ways in which we can say that two things happened at the same time:
1) They happened at the same place. If two cars collide at a street corner we know that they both were at the street corner at the same time - that's why there was a collision.
2) They happen at different places, but they both have the same time coordinate. For example this event happened at 12:37 PM; so did that one; so they happened at the same time.
Now, have you seen Einstein's thought experiment with the lightning flashes at each end of the train, the one that demonstrates the relativity of simultaneity? That shows that there is a fundamental difference between #1 and #2 above. All observers, regardless of their state of motion, will agree that in #1 both cars were at the street corner at the same time - either there's a crash or there isn't, but it can't be that some observers see the cars destroyed in a collision while others see them slipping safely past. However, as Einstein's train experiment shows, not all observers will agree about #2 - the two events at two different locations are simultaneous using one observer's coordinates but not simultaneous using the coordinates of another observer moving with reference to the first.
Study this thought experiment until you understand it thoroughly and the paragraph above makes sense. Note that physics is by no means over: determinism is intact, there's no uncertainty about whether the cars did collide, whether Einstein's lightning flashes did strike, and what time the various observers saw the various events happen. That last is different for the different observers, but in a perfectly understandable, predictable, and deterministic way.
OK, still with me? Then we can talk about "coordinate time", which is what people mean when they say "time" without further specifying what they mean. It's what we're using any time that we say something happens at a particular time and place. You've been using coordinate time all your life; it's the only kind we ever deal with day-to-day. And because of relativity of simultaneity, different observers use different time coordinates so have a different notion of time; but at least they can talk about events that are separated in space (the #2 case above).
We also have "proper time", which has a very specific and more restricted meaning, which I gave in my post earlier:
When we say that some amount of an observer's proper time has passed between two events, we're talking about the time along that observer's world line between the two events. It's only meaningful if the observer's world line actually passes through the events. Thus, it's easy for us to know the proper time for A to reach the event horizon: He looks at his wristwatch at the starting point, he looks at his wristwatch again as he reaches the event horizon, the difference between the two readings is the proper time that passed between leaving B and reaching the horizon.
The problem with asking how much of B's proper time passes while A falls to the event horizon (your original question) is that A reaching the horizon and B looking at his watch to see what it reads are happening at different places. So if we're going to say that B looks at his watch "when/at the same time" that A reaches the event horizon, we have to use the #2 definition of "at the same time"; the event of B looking at his watch must have the same time coordinate as the event of A reaching the horizon.
And what time coordinates are we going to use to make that determination? Because of the curvature of spacetime between A and B and the impossibility of exchanging light signals between them, there's no good answer to that question.