AxiomOfChoice said:
What's the most efficient way (other than just plotting it and eyeballing it) to show that
<br />
\lim_{x\to 0} \frac{\ln (1-x) - \sin x}{1 - \cos^2 x}<br />
does not exist?
One way is using Taylor expansions: \log(1-x)=-(x+\frac{x^2}{2}+\frac{x^3}{3}+...)\,\,,\,\,\sin x=x-\frac{x^3}{3!}+\frac{x^5}{5!}-...\Longrightarrow \sin^2x=x^2-\frac{x^4}{3}+... so\frac{\log(1-x)\sin x}{\sin^2x}=\frac{-2x-\frac{x^2}{2}-\frac{x^3}{6}-...}{x^2-\frac{x^4}{3}+...}=-\frac{1}{x}\frac{2+\frac{x}{2}+\frac{x^2}{3}+...}{1-\frac{x^2}{3}+...}
The second factor in the last expression above has limit \,2\,\text{when}\,x\to 0\, , whereas the first factor has no limit, as it approaches \,-\infty\,\,\,or\,\,\,+\infty\, according as whether \,x\to 0^+\,\,\,or\,\,\,x\to 0^-\, , resp.
DonAntonio