I think it is a fairly well accepted idea that black hole evaporation violates the standard conservation laws of particle physics. See, e.g., Wald, p. 413. It is true that there are some technical points involved. As Parlyne has pointed out, it's conceivable that only B-L is supposed to be conserved, not B and L separately. Also, the no-hair theorems only hold for electrovac solutions; solutions with hair are known for other fields besides the EM field, so we can't necessarily argue that a black hole must lost all memory of its input characteristics other than its mass, charge, and angular momentum.
It's actually kind of interesting to try to come up with a clear example where the standard-model conservation laws are violated. For example, let's build a black hole out of pure hydrogen, and then toss in one extra electron, so what went in had B-L=-1 and charge=-1. The fields surrounding this black hole are purely electrovac, so it loses all memory of anything other than its total mass, charge, and angular momentum. Now suppose when it evaporates it spits out that charge as a W- rather than an electron. The final state has B-L=0.