Does cartesian velocity contribute to Lat Long conversion?

AI Thread Summary
The discussion centers on whether incorporating velocity data into a 5D Cartesian system enhances the precision of converting to latitude, longitude, and altitude. It is clarified that the precision of spherical coordinates is primarily determined by the accuracy of the corresponding Cartesian coordinates, and speed does not impact this conversion. The conversation suggests that while velocity can help approximate a moving object's position over time, it does not necessarily improve the precision of the conversion itself. The complexities of transforming velocity into spherical coordinates are acknowledged, indicating that such transformations can be less precise over time compared to Cartesian coordinates. Overall, the inclusion of velocity in the conversion process does not significantly enhance accuracy, particularly for non-trivial motions.
k80sg
Messages
4
Reaction score
0
We understand that Lat Long Alt can be derived from 3D Cartesian (X,Y,Z) but does a 5D Cartesian (X, Y, Z, Vx, Vy) does the extra mile to provide a more precise conversion to Lat Long Alt with the additional velocity data?
 
Physics news on Phys.org
Welcome to PF.

Your question does not really make sense to me. The precision of the spherical coordinates of a point are determined by the precision of the corresponding Cartesian coordinates, speed does not enter the equation at all.

Perhaps you could explain the context of your problem and why you think the conversion is not precise enough for what you are trying to achieve. Sound a bit like there might be a moving object or vehicle involved?
 
Filip Larsen said:
Welcome to PF.

Your question does not really make sense to me. The precision of the spherical coordinates of a point are determined by the precision of the corresponding Cartesian coordinates, speed does not enter the equation at all.

Perhaps you could explain the context of your problem and why you think the conversion is not precise enough for what you are trying to achieve. Sound a bit like there might be a moving object or vehicle involved?

Thanks for answering the query, yes a moving object is involved hence the velocity information given. I was told by someone who is convinced that the additional velocity information does make a difference when doing a conversion to Lat Long Alt. I couldn't really understand the theory behind hence I wanted to seek advice here.
 
In general, if you have the cartesian coordinates of a moving vehicle at any point in time you can, as I said earlier, convert to spherical (or more precisely, geodetic) coordinates without any particular loss of precision.

It is still not clear to me what precisely you (or your friend) are thinking about. Perhaps you are thinking of vehicles that are only slowly (or not at all) accelerating. If you know that the vehicle at time t0 was at position r0 moving with velocity v, then we can approximate the position of the vehicle for times t close to t0 using an expression like rt = r0 + vt (with r and v being vectors). If you now would like a similar expression for the coordinates in spherical (or geodetic) coordinates, your friend is correct that you could transform the velocity as well to get a similar expression. However, since spherical and geodetic coordinates are "curved" while cartesian coordinates are "straight", spherical coordinates from such an expression, would in general be precise for a smaller period of time around t0 compared to the expression in cartesian coordinates. You could also try to get a more precise expression, but again, most non-trivial motions that are simple to describe in straight coordinates are often complicated to describe in curved coordinates, and visa versa.

It may also be that you friend is thinking about the Coriolis force or something similar? If you still want to pursue the mater, I'm afraid you will need to elaborate a bit more.
 
The rope is tied into the person (the load of 200 pounds) and the rope goes up from the person to a fixed pulley and back down to his hands. He hauls the rope to suspend himself in the air. What is the mechanical advantage of the system? The person will indeed only have to lift half of his body weight (roughly 100 pounds) because he now lessened the load by that same amount. This APPEARS to be a 2:1 because he can hold himself with half the force, but my question is: is that mechanical...
Hello everyone, Consider the problem in which a car is told to travel at 30 km/h for L kilometers and then at 60 km/h for another L kilometers. Next, you are asked to determine the average speed. My question is: although we know that the average speed in this case is the harmonic mean of the two speeds, is it also possible to state that the average speed over this 2L-kilometer stretch can be obtained as a weighted average of the two speeds? Best regards, DaTario
Some physics textbook writer told me that Newton's first law applies only on bodies that feel no interactions at all. He said that if a body is on rest or moves in constant velocity, there is no external force acting on it. But I have heard another form of the law that says the net force acting on a body must be zero. This means there is interactions involved after all. So which one is correct?
Back
Top