Does Every Topology Have a Minimal Subset Basis?

  • Thread starter Thread starter mathboy
  • Start date Start date
  • Tags Tags
    Basis Topology
mathboy
Messages
182
Reaction score
0
I can't seem to find this result in any of my textbooks. Given any basis B for a topology T on X, is there a minimal subset M of B that also is a basis for T (in the sense that any proper subset of M is not a basis for T)? If so, is Zorn's Lemma needed to prove this?
Is the same true of subbases?

Attempt at proof using Zorn's Lemma:
Let B be a basis for a topology T on X. Let A be the collection of all bases for T that is a subcollection of B. A is not empty because B is in A. Partially order A by set containment (i.e. D < E iff D contains E). Let C = {C_i} be a totally ordered subcollection of A. Let K = n(C_i) (intersection). We must show that K is a basis for T. Let U be a T-open set, and let x be in U. Since each C_i is a basis for T, then for each i, there exists C in C_i such that x is in C is a subset of U. Wait, C needs not be the same, and C needs not be in K.

Is the assertion false? What's a counterexample?
 
Last edited:
Mathematics news on Phys.org
How about this weaker assertion: Every topology T contains a minimal basis B for T (in the sense that any proper subset of B is not a basis for T).

This must be true, right? And the same for subbases? But Zorn's Lemma still doens't work.
 
My question even stumped topologist Henno Bradsma. He said:

"I found a result that a metric space has a minimal subbase (proved by van Emde Boas).
So probably not all spaces have them...
All finite spaces have a unique minimal base. This is all U_x, where U_x = /\{U: U open and x in U},
for x in X. Note that this argument works in all spaces where all intersections of open sets are open
(sometimes called Alexandrov spaces), so e.g. it's true in discrete spaces.
I think no base for R can be minimal, e.g., so the general result for bases seems false to me.

Henno"
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top