Jonnyb302 said:
if we assume positrons and electrons have the exact same rest mass in a flat space time at infinity, and we consider a small charge neutral test mass, sufficiently far away, does a positron-positron system exert a greater gravitational "force" on the test mass than an electron-positron system because of the difference in coulomb potential energy?
First, a technical point: there is no gravity in a flat spacetime; I think what you meant to say is "asymptotically flat spacetime", meaning it's effectively flat very far away from the central gravitating body, but not flat close to the body.
Second, in order to analyze scenarios like the ones you suggest in terms of "potential energy", the system as a whole has to be stationary--meaning, roughly, that its key parameters don't change with time. That's possible for an electron-positron system, since we can imagine them mutually in orbit about each other; but a positron-positron system can't be stationary unless there are other objects involved to hold them in place, and you have to include the energy of those other objects in your analysis. In what follows I'm going to assume that doing that doesn't have any significant impact on the analysis; but that's a questionable assumption. I make it only because you're asking about such a case only as an idealized scenario about potential energy.
With those caveats, the answer to your question as you posed it (quoted above) is yes: if we assume that all other relevant parameters are equal (the main one being the distance between the two particles, electron-positron and positron-positron), the positron-positron system will have a larger externally measured mass than the electron-positron system, because of the difference in potential energy. However, that doesn't necessarily mean what you might think it means. Saying that the externally measured mass of the two systems is different is *not* the same as saying that their "energy density" is different. See further comments below.
Jonnyb302 said:
A follow up question would be if there are differences, does a region of negative energy density repel objects?
There is no "negative energy density" in either of the idealized systems in your scenario (positron-positron *or* electron-positron). A negative potential energy is *not* the same as a negative energy density. (There is such a thing as "negative energy density", theoretically speaking, but it's not anything you're going to see in normal matter.) Potential energy is always relative to a "zero point" that is, strictly speaking, arbitrary; there may be a "natural" choice for the zero, but physically speaking, it's still an arbitrary choice; only differences in potential energy actually matter.
When computing the contribution of potential energy to the externally observed mass of a stationary system, for example, one is actually computing the difference between the mass that the constituents of the system would have if they were all separated "at infinity", and the mass of the actual system itself, with the constituents put together. In other words, the "zero point" of potential energy is taken to be the mass of the separated constituents. In the case of your scenarios, that would be the sum of the rest masses of 1 electron and 1 positron, or 2 positrons (these are the same, obviously). The bound electron-positron system would have *less* mass than a separate electron + a separate positron, because to form the bound system from an electron and a positron "at infinity", one or both of the particles would have to emit radiation equal to the Coulomb binding energy between them in the bound state. Conversely, the positron-positron system would have *more* mass than 2 separate positrons, because one would have to expend energy and do work on the system to push the positrons together and hold them stationary at a finite distance apart. But all of these externally measured masses are positive.
Furthermore, if we ask what the energy density is in these systems, it will be the same in all of them. Energy density is a local quantity; we can in principle measure it at a single event in spacetime. Locally, we just have 1 electron and 1 positron, or 2 positrons, and their energy density is the same whether they are in a bound system or not. The difference between these systems and separate electrons or positrons is in the spatial relationships between the particles, not in the energy density of the particles themselves.