Does the Distribution of X + Y mod a Remain Uniform?

areslagae
Messages
11
Reaction score
0
If X is uniformly distributed over [0,a), and Y is independent, then X + Y (mod a) is uniformly distributed over [0,a), independent of the distribution of Y.

Can anyone point me to a statistics text that shows this?

Thanks,
 
Physics news on Phys.org
areslagae said:
If X is uniformly distributed over [0,a), and Y is independent, then X + Y (mod a) is uniformly distributed over [0,a), independent of the distribution of Y.

Can anyone point me to a statistics text that shows this?

Thanks,

Consider any possible value from Y. Since X and Y are independent, X + that value is uniformly distributed mod a. Now since this is true for any value, it is true for any combination of values.
 
I don't know of a text, but the proof is simple enough. Let Y=y, then X+y (mod a) is uniformly distributed, since X is independent of Y. Therefore the theorem holds irrespective of the distribution of Y.
 
Thanks for both your replies!

At first, me (and my collegues) found this result somewhat counter-intuitive. It seems that you do not, but you most likely you have a deeper intuition.

Meanwhile, I also found the following paper which is interesting in this context:
The Distribution Functions of Random Variables in Arithmetic Domains Modulo a
P. Scheinok
http://www.jstor.org/stable/2310973

It seems that the theorem from my first post follows from 3.3, with g_Y()=1/a.

Thanks,
 
Last edited by a moderator:
Hi all,

I have a quick additional question.

A colleague pointed out to me that the cited paper only proves the theorem from my first post in the case that Y is defined over [0,a].

However, the random variables (X + Y) mod a and (X + (Y mod a)) mod a have the same distribution, so the original theorem should hold, no?

Thanks,
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.

Similar threads

Back
Top