Does the Harmonic Oscillator Wave Function Change in Momentum Space?

frogjg2003
Messages
263
Reaction score
0

Homework Statement



I'm trying to prove that the Harmonic oscillator wave function doesn't change (except a phase factor) when I convert from position to momentum space.
\Phi_{nlm}(\vec p)=(-i)^{2n+l}\Psi_{nlm}(\vec p)

Homework Equations



\Phi_{nlm}(\vec p)=\frac{1}{(2\pi)^{3/2}}\int d^3r e^{-i \vec p\cdot\vec r}\Psi_{lmn}(\vec r)
\Psi_{nlm}(\vec r)=N_{nl} \alpha^{3/2} e^{-(\alpha r)^2/2} L^{l+\frac{1}{2}}_n((\alpha r)^2) R_{lm}(\alpha\vec r)
in natural units and α is in GeV. L_n^{l+\frac{1}{2}}(x^2) is the associated Laguerre polynomials, R_{lm}(\vec r)=\sqrt{\frac{4\pi}{2l+1}} r^lY_{lm}(\hat r) and Nnl is a normalization constant. I'm leaving α out of Nnl because I want to keep track of it for later calculations.
R_{lm}(\vec x+\vec a)=\sum_{\lambda=0}^l \sum_{\mu=-\lambda}^\lambda \sqrt{\binom{l+m}{\lambda+\mu}\binom{l-m}{\lambda-\mu}} R_{lm}(\vec x) R_{(l-\lambda) (m-\mu)}(\vec a)
R_{lm}(a\vec x)=a^lR_{lm}(\vec x)
All integrals are over all space, i.e.
\int d^3 r=\int_0^\infty dr \int_0^\pi r d\theta \int_0^{2\pi} r\sin{\theta} d\phi

The Attempt at a Solution



The end result should be \Phi_{lmn}(\vec p)=(-i)^{2n+l} N_{nl} \alpha^{-3/2} e^{-(p/\alpha)^2/2} L^{l+\frac{1}{2}}_n((\frac{p}{\alpha})^2) R_{lm}(\frac{\vec p}{\alpha})

I've managed to manipulate it into
\Phi_{nlm}=\frac{N_{nl}}{(2\pi\alpha)^{3/2}} e^{-q^2/2}\int d^3 x e^{-(\vec x+i \vec q)^2/2} L^{l+\frac{1}{2}}_n(x^2) R_{lm}(\vec x)
where x=\alpha r and q=\frac{p}{\alpha}. I want to further transform it to \vec y=\vec x-i\vec q and integrate over y.
I can't figure out if the differential volume element changes, i.e. if I can just write it as
\Phi_{nlm}=\frac{N_{nl}}{(2\pi\alpha)^{3/2}} e^{-q^2/2}\int d^3 y e^{-y^2/2} L^{l+\frac{1}{2}}_n((\vec y-i\vec q)^2) R_{lm}(\vec y-i\vec q)

Assuming I could, I continued and managed to get it into the relatively simple form of
\Phi_{nlm}=\frac{N_{nl}}{(2\pi\alpha)^{3/2}} e^{-q^2/2}\sum_{\lambda=0}^l\sum_{\mu=-\lambda}^\lambda \sqrt{\frac{4\pi}{2\lambda+1}\binom{l+m}{\lambda+\mu}\binom{l-m}{\lambda-\mu}} (-i)^l R_{(l-\lambda)(m-\mu)}\int d^3y e^{-y^2/2} L^{l+\frac{1}{2}}_n((\vec y-i\vec q)^2) y^\lambda Y_{\lambda\mu}(\hat y)

For n=0, L_n^{l+\frac{1}{2}}(x)=1, so it was trivial to show it was correct. For n=1, I can't get the cross term in y^2-2i\vec y\cdot \vec q-q^2 to disappear and it leaves \delta_{\lambda1} terms I can't seem to get rid of.
 
Physics news on Phys.org
I think that it's not necessary to play about with all the special functions to see this.

If you write out the time-independent Schrodinger equation in p-space, you'll find that it looks exactly the same as it does in x-space, with some annoying factors of m, \omega and \hbar shuffled around. So when you solve the energy eigenvalue problem in p-space, you're basically doing exactly the same math as you would be in x-space, and the answers will be of the same form.

It all comes about because of the x-p symmetry of the harmonic oscillator Hamiltonian. That Hamiltonian, roughly speaking, can't tell the difference between x and p.
 
True, but that's the undergrad method. I want to be able to transform wavefunctions that aren't the same in both spaces, and this would is a very good test case.
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top