Does the Kubo Formula Calculate Conductivity for Antennas or Photodetectors?

  • Context: Graduate 
  • Thread starter Thread starter Albe5588
  • Start date Start date
  • Tags Tags
    Conductivity Formula
Click For Summary
SUMMARY

The discussion centers on the application of the Kubo formula in calculating conductivity for antennas versus photodetectors, specifically in the context of graphene photodetectors. The Kubo-Greenwood formula is established as a method for determining optical conductivity (σ) as a function of frequency, where σ represents the ratio of alternating current (AC) to the electric field at that frequency. The user clarifies that while antennas can detect amplitude and phase of electromagnetic waves, photodetectors like graphene primarily measure power through the photoelectric effect. The conclusion drawn is that the Kubo formula is relevant for calculating conductivity linked to AC currents, not for the DC currents generated in photodetection.

PREREQUISITES
  • Understanding of the Kubo-Greenwood formula for optical conductivity
  • Knowledge of the photoelectric effect and its implications in photodetectors
  • Familiarity with the principles of electromagnetic wave detection
  • Basic concepts of graphene and its optical properties
NEXT STEPS
  • Research the Kubo-Greenwood formula in detail for applications in condensed matter physics
  • Explore the principles of photodetection in graphene and its efficiency across optical frequencies
  • Investigate the differences between AC and DC current measurements in electromagnetic applications
  • Study experimental methods for verifying conductivity calculations in materials like graphene
USEFUL FOR

Researchers, physicists, and engineers working in the fields of condensed matter physics, photonics, and materials science, particularly those focused on the development and optimization of graphene-based photodetectors.

Albe5588
Messages
2
Reaction score
0
Hello everybody,
I'm new. It's a long time a have a big (probably stupid) doubt about the interaction between light and media, and now it's time to solve it. The doubt its essentially concerning the difference between an antenna and a photodetector: the first one is able to detect the amplitude and the phase of an electromagnetic wave, the second one detects the power.

To what I know, the principle of functioning of an antenna is completely different from a detector, because its based on the generation of "surface" alternate current by the electric field impinging a metal, while a detector is based on the photoelectric effect.An optical wavelength cannot be detected in its amplitude and phase like a GHz one, because electrons in media are too slow to follow the electric field variation at hundread of THz.Now, we can calculate the conductivity as a function of the frequency of an external electromagnetic excitation, starting from the Kubo formula.

The question is: is the Kubo formula an equation to calculate the conductivity in the sense of an antenna or in the sens of a photodetector? what I mean is: if I calculate the conductivity at a certain frequency, is this conductivity linked with a varying current at the same frequency of the field, or it is linked to a dc current generated by the photoelectric effect?

I don't know if I was clear, and I admit that I have a lot of confusion about this argument, that's why I need your help :)
 
Physics news on Phys.org
The Kubo-Greenwood formula for the optical conductivity is for calculating sigma as a function of frequency; sigma is the ratio of the ac current to the electric field at that frequency.
 
PietKuip said:
The Kubo-Greenwood formula for the optical conductivity is for calculating sigma as a function of frequency; sigma is the ratio of the ac current to the electric field at that frequency.

Ok , thak you!

I pose this question because I'm working on graphene photodetectors. Graphene exhibits a flat absorbance over a wide range of optical frequencies. There are some experiments that show this, for example http://arxiv.org/ftp/arxiv/papers/0810/0810.1269.pdf. In this work they calculate the conductivity with the Kubo formula and exprimentally verify it.

So, does it means that graphene can detect the phase and amplitude of an hundread of therahertz (optical) electromagnetic field as an antenna does for a GHz signals ?

Moreover, if I send light on graphene at optical wavelengths, I can measure a dc current generated by light; so, I can see this current generation process (photodetection) as a change in conductivity induced by the creation of electron-hole couples. for what you said, this change in conductivity has nothing to do with the kubo formula. Do I am right?
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
5K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
5
Views
2K
  • · Replies 15 ·
Replies
15
Views
3K
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 152 ·
6
Replies
152
Views
11K