Does the Variable ##t## Represent Multiple Concepts in Physics Problems?

  • Thread starter Thread starter kanekiyura
  • Start date Start date
  • Tags Tags
    Ring Rotating
Click For Summary
The discussion highlights confusion regarding the representation of time variable ##t## in physics problems, specifically its dual role as both a specific moment and an independent variable in velocity equations. Participants emphasize the need for clarity in defining the ant's speed relative to the ring versus its changing velocity. They suggest creating sketches to visualize the problem and derive equations for both the ant's velocity and the ring's center. The conversation underscores the importance of accurately formulating the relationship between time and velocity to avoid ambiguity. Clear definitions and structured equations are essential for solving the problem effectively.
kanekiyura
Messages
1
Reaction score
0
Homework Statement
A rigid thin ring shaped like a circle of radius R rotates
uniformly around a fixed axis passing through one of the points of the circle and perpendicular to its plane. An ant crawls along the ring, moving all the time relative to the annulus with a constant velocity.At time t = 0, the velocity of the ant relative to a stationary observer is maximal and equal to v1.After time t, this velocity becomes minimal for the first time and equal to v2. Find the law of variation of the velocity value v(t).
Relevant Equations
I really don't know
I do not know how to solve this. All I got was to exclude the speed of the ant relative to the ring from the equation for its full speed
 
Physics news on Phys.org
Hello @kanekiyura ,
:welcome:

Unfortunately, PF doesn't work this way. The PF guidelines dictate that you post your best attempt at solution before we are allowed to help.

Make some sketches that help you find ##v_1## and ##v_2##.

##\ ##
 
First, to be accurate, it's the ant's speed that can be constant relative to the periphery of the ring, not its velocity. The velocity keeps changing direction.
Can you write an equation for the velocity of the centre of the ring at time t? And an equation for the ant's velocity relative to the centre of the ring?
 
  • Like
Likes MatinSAR and vela
kanekiyura said:
After time t, this velocity becomes minimal for the first time and equal to v2. Find the law of variation of the velocity value v(t).
Is there consensus that symbol ##t## is used rather carelessly to stand for two different entities?
1. A specific time at which the "velocity becomes minimal for the first time and equal to v2."
2. The independent variable in "the law of variation of the velocity value v(t)."

If that is the case, then perhaps a clearer formulation of the relevant section might be

At time ##t = 0##, the velocity of the ant relative to a stationary observer is maximal and equal to ##v_1.## At time ##t=t_2## this velocity becomes minimal and equal to ##v_2##. Find the law of variation of the velocity ##v(t).##
 
  • Like
Likes nasu, haruspex and MatinSAR
Thread 'Chain falling out of a horizontal tube onto a table'
My attempt: Initial total M.E = PE of hanging part + PE of part of chain in the tube. I've considered the table as to be at zero of PE. PE of hanging part = ##\frac{1}{2} \frac{m}{l}gh^{2}##. PE of part in the tube = ##\frac{m}{l}(l - h)gh##. Final ME = ##\frac{1}{2}\frac{m}{l}gh^{2}## + ##\frac{1}{2}\frac{m}{l}hv^{2}##. Since Initial ME = Final ME. Therefore, ##\frac{1}{2}\frac{m}{l}hv^{2}## = ##\frac{m}{l}(l-h)gh##. Solving this gives: ## v = \sqrt{2g(l-h)}##. But the answer in the book...

Similar threads

Replies
1
Views
1K
  • · Replies 9 ·
Replies
9
Views
1K
Replies
7
Views
2K
Replies
7
Views
1K
Replies
39
Views
3K
  • · Replies 19 ·
Replies
19
Views
2K
Replies
30
Views
3K
Replies
2
Views
1K
Replies
1
Views
997
  • · Replies 1 ·
Replies
1
Views
739