DoF of a Gauge Boson - Why Only 1 for Virtual Photons?

  • Thread starter Thread starter ismaili
  • Start date Start date
  • Tags Tags
    Boson Dof Gauge
ismaili
Messages
150
Reaction score
0
As we know, the number of physical degrees of freedom(DoF) for a photon is 2.

I can understand this by gauging away redundant DoF's by gauge fixing.

For example, in QED, by fixing the Lorentz gauge \partial_\mu A^\mu = 0,

we could get rid of one DoF, moreover, the residual gauge symmetry, which is

A^\mu \rightarrow A^\mu + \partial^\mu f(x)

with \partial^2 f = 0 could allow us to remove another DoF.

This means the physical DoF of a photon is 2.

------

However, on the other hand, we know that the virtual photon

which appearing in the internal legs of Feynman diagrams could have some longitudinal component.

And this longitudinal DoF could interact with other particles in a Feynman diagram.

However, this means the above symmetry argument in the first part of my post could NOT apply

to virtual photons. I don't know why. We could always gauge away two DoF's,

however, consideration of Feynman diagrams says that we could only gauge away 1 DoF of

virtual particles, why is that?

Thanks!
 
Physics news on Phys.org
hi ismaili! :smile:

virtual photons aren't real

they're mathematical inventions with an extra degree of freedom :wink:
 
In QED you can fix the gauge in such a way that only the two physical polarizations do survive. I like the A°=0 and div A = 0 gauge better b/c A° is unphysical (its conjugate momentum is zero and it therefore acts as a Lagrange multiplier generating the Gauss law). Once you chose this gauge A° has been eliminated by constrcution and you can solve the Gauss law such that unphysical (longitudinal) polarizations are restricted to an unphysical Hilbert space which is (and remains under time evolution) orthogonal to the physical Hilbert space.

Constructing the physical, gauge-fixed Hamiltonian you only see two polarizations.

I know that in standard QFT textbooks this gauge is rarely discussed as Lorentz covariance is no longer visible and has to be checked for explicitly in all the calulations. Nevertheless it is useful in order to study physical degrees of freedom. In QCD you can show that both longitudinal gluons and even ghosts are absent in such physical gauges.

So the reason behind different number of degrees of freedom is a gauge artefact only.

http://adsabs.harvard.edu/abs/1994AnPhy.233...17L
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
According to recent podcast between Jacob Barandes and Sean Carroll, Barandes claims that putting a sensitive qubit near one of the slits of a double slit interference experiment is sufficient to break the interference pattern. Here are his words from the official transcript: Is that true? Caveats I see: The qubit is a quantum object, so if the particle was in a superposition of up and down, the qubit can be in a superposition too. Measuring the qubit in an orthogonal direction might...

Similar threads

Replies
60
Views
4K
Replies
6
Views
2K
Replies
7
Views
4K
Replies
2
Views
3K
Replies
9
Views
2K
Replies
10
Views
2K
Back
Top