MHB Don't think there is a solution

  • Thread starter Thread starter dayalji
  • Start date Start date
Click For Summary
The discussion revolves around solving the equation involving cosecant and secant functions. A user initially presents a problematic equation with mismatched parentheses, leading to confusion. After clarifying the equation, it is determined that the left-hand side simplifies to zero, not fifty, indicating a typo. The correct manipulation of the equation ultimately shows that sec^2(x) equals 25. The importance of presenting progress in problem-solving is emphasized to facilitate better assistance.
dayalji
Messages
2
Reaction score
0
Hi if
cosec(x)/(1-cosec(x) -cosec(x)/(1-cosec(x)=50

show that sec^2(x)=25
 
Mathematics news on Phys.org
dayalji said:
cosec(x)/(1-cosec(x) -cosec(x)/(1-cosec(x)=50

Hi dayalji and welcome to MHB! :D

You have a mismatched parenthesis, so it's difficult to tell what the problem is. Please correct your work.

Also, we ask that our users show their progress (work thus far or thoughts on how to begin) when posting questions. This way our helpers can see where you are stuck or may be going astray and will be able to post the best help possible without potentially making a suggestion which you have already tried, which would waste your time and that of the helper.

Can you post what you have done so far?
 
greg1313 said:
Hi dayalji and welcome to MHB! :D

You have a mismatched parenthesis, so it's difficult to tell what the problem is. Please correct your work.

Also, we ask that our users show their progress (work thus far or thoughts on how to begin) when posting questions. This way our helpers can see where you are stuck or may be going astray and will be able to post the best help possible without potentially making a suggestion which you have already tried, which would waste your time and that of the helper.

Can you post what you have done so far?
Hi Greg1313
I have written question again. Problem is the expressions cancel each other out and keep ending with zero.

If $\frac{cosec(x)}{(1-cosec(x)} - \frac{cosec(x)}{(1-cosec(x)} =50 $

show that $sec^2(x)=25$
 
The left hand side of the equation you give above is identically 0, not 50.
 
I think I've found the typo . . .

\text{If }\dfrac{\csc}{1+\csc x} - \frac{\csc x}{1-\csc x} \:=\:50

\text{show that } \sec^2(x)\,=\,25
\begin{array}{cccc}<br /> \text{We have:} &amp; \dfrac{csc x}{1+\csc x} - \dfrac{csc x}{1 - \csc x} &amp;=&amp;50\\ \\<br /> &amp; \dfrac{\csc x(1-\csc x) - \csc x)1+\csc x)}{(1+\csc x)(1 - \csc x)} &amp;=&amp; 50\\ \\<br /> <br /> &amp; \dfrac{-2\csc^2x}{1-\csc^2x} &amp;=&amp; 50\\ \\<br /> <br /> &amp; \dfrac{\frac{-2}{\sin^2x}}{1 - \frac{1}{\sin^2x}} &amp;=&amp; 50 \\ \\<br /> <br /> &amp; \dfrac{-2}{\sin^2x-1} &amp;=&amp; 50\\ \\<br /> <br /> &amp; \dfrac{-2}{-\cos^2x} &amp;-&amp; 50 \\ \\<br /> &amp;2\sec^2x &amp;=&amp; 50 \\ \\<br /> &amp; \sec^2x &amp;=&amp; 25<br /> \end{array}

.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
Replies
7
Views
3K
  • · Replies 14 ·
Replies
14
Views
4K
Replies
3
Views
2K
  • · Replies 10 ·
Replies
10
Views
1K
  • · Replies 12 ·
Replies
12
Views
4K