I don't necessarily agree with the results of buffordboy23. In subwavelength slits, the reradiated fields are that of a point source. But once you expand the slit width above a wavelength, then the field no longer acts like a point source but will carry through along its primary axis as if the slit was not there. Only on the edges and at angles away from the primary axis will the wave become diffracted.
So expanding the slit will increase the amplitude of the transmitted wave and it will make the wave along the primary axis more like the original wave. I would expect that the measured intensity would become asymetrical. Attached are my results, but my results are against a flat plane of 100 wavelengths from the screen. The width of the plane encompasses the pi/4 radian beamwidth that buffordboy24's simulation did. Amplitude won't change the points of inteference, but it will change the amplitude of the total wave at that point. The fields will drop off at around 1/r
2 in intensity. Ignoring phase and such like that, we know that at a given point the distance from the two slits (except along the perpendicular bisector) will be different. If we are 5 m to the left of the midpoint then the radiation from the left hand and right hand slits will scale as 1/r_l and 1/r_r where 1/r_l > 1/r_r. This situation is perfectly reversed 5 m to the right of the midpoint. So it's obvious that if the slits radiated at different amplitudes, that the combined amplitudes should be asymmetric.
The only difference is that he is assuming distances beyond the Frauhenhoffer limit. For a radiator this is something like \frac{2D^2}{\lambda}. The question is what is D then... If it's the size of the largest slit, then my first two simulations of 3 and 6 wavelengths is in the far-field but then the third is in the region between (I can't remember what that is called). But given the fact that we have two radiators I think D is on the order of 100 wavelengths which is not a far-field simulation I can do.
EDIT: Here are some videos I made (URL=
http://www.youtube.com/watch?v=FeCV27-mk0I&fmt=18 in case they don't load).
https://www.youtube.com/watch?v=<object width="425" height="344"><param name="movie" value="http://www.youtube.com/v/FeCV27-mk0I&hl=en&fs=1"></param><param name="allowFullScreen" value="true"></param><param name="allowscriptaccess" value="always"></param><embed src="http://www.youtube.com/v/FeCV27-mk0I&hl=en&fs=1" type="application/x-shockwave-flash" allowscriptaccess="always" allowfullscreen="true" width="425" height="344"></embed></object>
https://www.youtube.com/watch?v=<object width="425" height="344"><param name="movie" value="http://www.youtube.com/v/Xx-_Me4Rock&hl=en&fs=1"></param><param name="allowFullScreen" value="true"></param><param name="allowscriptaccess" value="always"></param><embed src="http://www.youtube.com/v/Xx-_Me4Rock&hl=en&fs=1" type="application/x-shockwave-flash" allowscriptaccess="always" allowfullscreen="true" width="425" height="344"></embed></object>
Sorry for taking so long, I got so caught up with things I went ahead and revamped my code. Now it uses OMP, among other optimizations I made to the code, and can take input files so that you can simulate any PEC structure and current sources that you want in free-space. Yay. That means it's easy to do something with three sources that turn on and off with different frequencies and amplitudes in multiple scatterer environment.
https://www.youtube.com/watch?v=<object width="425" height="344"><param name="movie" value="http://www.youtube.com/v/GT1aRoauKm8&hl=en&fs=1"></param><param name="allowFullScreen" value="true"></param><param name="allowscriptaccess" value="always"></param><embed src="http://www.youtube.com/v/GT1aRoauKm8&hl=en&fs=1" type="application/x-shockwave-flash" allowscriptaccess="always" allowfullscreen="true" width="425" height="344"></embed></object>