MHB DSphery's question at Yahoo Answers (matrix powering question)

  • Thread starter Thread starter Fernando Revilla
  • Start date Start date
AI Thread Summary
The discussion centers on finding an explicit formula for the n-th power of a specific 3x3 matrix. The matrix is expressed as a combination of a scalar multiple of the identity matrix and a nilpotent matrix. Using the Newton's binomial theorem, the n-th power of the matrix can be derived, resulting in a formula that incorporates powers of "a" and coefficients based on "b." The final expression includes terms for the identity matrix and the nilpotent matrix raised to various powers. This approach effectively provides the explicit form sought by the original poster.
Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
Here is the question:

Consider you have a 3x3 matrix like this:
a b 0
0 a b
0 0 a
The question is the explicit formule for the n-th power. It's simple to see that the "a"-s will convert to "a^n" and I've also worked out a formula for the rest of the elements, but those are implicit forms. Can anyone help me with an explicit form of it for the n-th power? Thank you in advance!

Here is a link to the question:

Matrix powering question, with specific matrix.? - Yahoo! Answers


I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Hello DSphery,

The simplest way in this case: we can express
$$A=\begin{bmatrix}{a}&{b}&{0}\\{0}&{a}&{b}\\{0}&{0}&{a}\end{bmatrix}=aI+bN, \mbox{ where } N=\begin{bmatrix}{0}&{1}&{0}\\{0}&{0}&{1}\\{0}&{0}&{0}\end{bmatrix}$$
The matrix $N$ is nilpotent that is,

$$N^2=\begin{bmatrix}{0}&{0}&{1}\\{0}&{0}&{0}\\{0}&{0}&{0}\end{bmatrix},N^3=0,N^4=0,\ldots$$
As $(aI)(bN)=(bN)(aI)$ we can use the Newton's binomial theorem:
$$A^n=(aI+bN)^n=\displaystyle\binom{n}{0}(aI)^n+ \displaystyle\binom{n}{1}(aI)^{n-1}(bN)+\binom{n}{2}(aI)^{n-2}(bN)^2$$
Equivalently:
$$A^n=a^n\begin{bmatrix}{1}&{0}&{0}\\{0}&{1}&{0}\\{0}&{0}&{1}\end{bmatrix}+na^{n-1}b\begin{bmatrix}{0}&{1}&{0}\\{0}&{0}&{1}\\{0}&{0}&{0}\end{bmatrix}+\dfrac{n(n\color{red}-1)}{2}a^{n-2}b^2\begin{bmatrix}{0}&{0}&{1}\\{0}&{0}&{0}\\{0}&{0}&{0}\end{bmatrix}$$
Now, we can conclude.
 
Last edited:
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top