MHB DSphery's question at Yahoo Answers (matrix powering question)

  • Thread starter Thread starter Fernando Revilla
  • Start date Start date
Click For Summary
The discussion centers on finding an explicit formula for the n-th power of a specific 3x3 matrix. The matrix is expressed as a combination of a scalar multiple of the identity matrix and a nilpotent matrix. Using the Newton's binomial theorem, the n-th power of the matrix can be derived, resulting in a formula that incorporates powers of "a" and coefficients based on "b." The final expression includes terms for the identity matrix and the nilpotent matrix raised to various powers. This approach effectively provides the explicit form sought by the original poster.
Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
Here is the question:

Consider you have a 3x3 matrix like this:
a b 0
0 a b
0 0 a
The question is the explicit formule for the n-th power. It's simple to see that the "a"-s will convert to "a^n" and I've also worked out a formula for the rest of the elements, but those are implicit forms. Can anyone help me with an explicit form of it for the n-th power? Thank you in advance!

Here is a link to the question:

Matrix powering question, with specific matrix.? - Yahoo! Answers


I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Hello DSphery,

The simplest way in this case: we can express
$$A=\begin{bmatrix}{a}&{b}&{0}\\{0}&{a}&{b}\\{0}&{0}&{a}\end{bmatrix}=aI+bN, \mbox{ where } N=\begin{bmatrix}{0}&{1}&{0}\\{0}&{0}&{1}\\{0}&{0}&{0}\end{bmatrix}$$
The matrix $N$ is nilpotent that is,

$$N^2=\begin{bmatrix}{0}&{0}&{1}\\{0}&{0}&{0}\\{0}&{0}&{0}\end{bmatrix},N^3=0,N^4=0,\ldots$$
As $(aI)(bN)=(bN)(aI)$ we can use the Newton's binomial theorem:
$$A^n=(aI+bN)^n=\displaystyle\binom{n}{0}(aI)^n+ \displaystyle\binom{n}{1}(aI)^{n-1}(bN)+\binom{n}{2}(aI)^{n-2}(bN)^2$$
Equivalently:
$$A^n=a^n\begin{bmatrix}{1}&{0}&{0}\\{0}&{1}&{0}\\{0}&{0}&{1}\end{bmatrix}+na^{n-1}b\begin{bmatrix}{0}&{1}&{0}\\{0}&{0}&{1}\\{0}&{0}&{0}\end{bmatrix}+\dfrac{n(n\color{red}-1)}{2}a^{n-2}b^2\begin{bmatrix}{0}&{0}&{1}\\{0}&{0}&{0}\\{0}&{0}&{0}\end{bmatrix}$$
Now, we can conclude.
 
Last edited:
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
5K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K