LagrangeEuler
- 711
- 22
\{\vec{A},\vec{B}\}\cdot \vec{C}=\vec{A}(\vec{B}\cdot \vec{C})
\vec{C} \cdot \{\vec{A},\vec{B}\}=(\vec{C}\cdot \vec{A}) \vec{B}
I want to write dyade in Dirac notation.
(|\vec{A}\rangle\langle\vec{B}|)|\vec{C}\rangle= |\vec{A}\rangle\langle\vec{B}|\vec{C}\rangle
\langle\vec{C}|(|\vec{A}\rangle\langle\vec{B}|)=< \vec{C} |\vec{A}\rangle|\vec{B}\rangle
Why not
\langle \vec{C} |\vec{A}\rangle\langle \vec{B}|
in last equation?
\vec{C} \cdot \{\vec{A},\vec{B}\}=(\vec{C}\cdot \vec{A}) \vec{B}
I want to write dyade in Dirac notation.
(|\vec{A}\rangle\langle\vec{B}|)|\vec{C}\rangle= |\vec{A}\rangle\langle\vec{B}|\vec{C}\rangle
\langle\vec{C}|(|\vec{A}\rangle\langle\vec{B}|)=< \vec{C} |\vec{A}\rangle|\vec{B}\rangle
Why not
\langle \vec{C} |\vec{A}\rangle\langle \vec{B}|
in last equation?