Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Earth's response to CO2 underestimated

  1. Dec 10, 2009 #1

    Last edited by a moderator: Apr 24, 2017
  2. jcsd
  3. Dec 11, 2009 #2


    User Avatar

    The Middle Pliocene was a period in earth’s history between 2.85 to 3.15 Million years ago.
    It was a significantly warmer period lasting about 300,000 years. The continents were within a hundred miles of where they are now with plants and animals similar to today.
    There was less ice in the Antarctic and a minimal ice cap on Greenland.
    What is now tundra was covered with forest. There were also fewer deserts as they were
    replaced by tropical shrubs and savanna. Sea levels were about 35 meters higher.

    However, CO2 levels were only slightly higher than they are now. Much of the additional
    warmth was a consequence of less ice at both poles and additional vegetation that absorbed more of the sun’s energy. Precipitation patterns were also altered as were the ocean currents.

    At 0.016C/year, Middle Pliocene like temperatures could be achieved within 225 years.
    At 3mm/year, Middle Pliocene sea levels could be obtained within 12,000 years.
    Obviously, there could be some acceleration of the rate at which ice sheets are melting.
    However, these time periods illustrate the scale over which full realization of the warming could be felt. Even with some acceleration, it’s going to take a long time to melt much of Greenland and for trees to grow on the exposed soils.







  4. Dec 12, 2009 #3
    There are other sets of CO2 estimates covering this period and the general trend of CO2 over the past 20 million years is for CO2 at around 280 ppm (+/- 40 ppm).

    Individual estimates for individual time periods can be cherrypicked but looking at the overall trend over time and the variability that exists in the various estimates, a good average for CO2 at 3 million years ago would be 280 ppm.

    http://img14.imageshack.us/img14/116/co245m.png [Broken]
    Last edited by a moderator: May 4, 2017
  5. Dec 12, 2009 #4


    User Avatar

    Nice chart Bill;

    Do you have a link to the source?

    The Middle Pliocene occurred around 3 million years ago and may line up with a spike on your chart that briefly rises to about 1100 ppm. The values I've seen are in the range of 360 to 440 ppm.


    and this from Raymo:


    135% of 280ppm is 378ppm.
    Current CO2 levels are around 385ppm.

    However, Raymo is also pointing to a stronger thermohaline circulation as a positive feedback and of course it will take a long time to melt ice and for plants to re-establish themselves.
  6. Dec 12, 2009 #5
  7. Dec 13, 2009 #6
    One can also cherrypick temperature estimates as well.

    Raymo's newest dO18 isotope stack would put the temperatures 3 million years ago at just a little above today (not quite +1.0C from today would match up with the other dO18 isotope temperature estimates).

    http://www.moraymo.us/images/3.2isotoperecord.jpg [Broken]
    Last edited by a moderator: May 4, 2017
  8. Dec 13, 2009 #7


    User Avatar

    Don't cherry pick!

    Keep in mind that dO18 percentages are not 1:1 equivalent to temperature. Also, there is no indication of where the data for the above chart was collected. Was it a tropical location? Anyhow, this is why it's always good to include a link to a peer reviewed paper for what ever data or chart is being presented. It helps everyone from being mislead.

    Here is a 2009 paper from Raymo and others that has found North Atlantic sea surface temperatures during the early pliocene about 6C warmer than present.

    http://www.moraymo.us/2009_Lawrenceetal.pdf [Broken]

    Last edited by a moderator: May 4, 2017
  9. Dec 13, 2009 #8
    All these isotopes need to be calibrated to temperatures we are reasonably sure about.

    The dO18 isotope data does not end at 4 million years ago. It goes back to 540 million years and earlier.

    If one is going to put a +3.0C or +6.0C on the values of 3 million years ago, then 15 million years ago, we are up to +9.0C to +18.0C. The Eocene Maximum goes to +20.0C or more. The Cretaceous Hothouse is closing in on +30.0C.

    Then one has to match up to the ice age temperatures of -4.0C to -5.0C.

    If we are comparing CO2 sensitivity to temperature, then the global temperature estimates should be used rather than the polar equivalent temperatures (which vary by twice as much as the global temperature) (site 983 in the North Atlantic is probably a little less than twice and I don't know much about this Uk37 isotope).

    This page shows the global temperature numbers based on the dO18 isotopes (I have all this data as well).

  10. Dec 13, 2009 #9


    User Avatar

    I agree Bill; but I'm not sure if that Wikipedia graph has been peer reviewed.
    There appear to be some discontinuities.

    UK'37 is an index of the di-unsaturated to tri-unsaturated alkenones found in Coccolithophores.
    It is measured using a gas chromatograph.

    UK′37=[C37:2]/[C37:2+ C37:3]

    As far as I know, it's a good method for measuring sea temperatures from sediments up to 100 million years old.

    T (οC) = (UK′37 - 0.039) / 0.034

    Prahl, F.G. & Wakeham, S.G. (1987) Calibration of unsaturation patterns in long-chain ketone compositions for palaeotemperature assessment, Nature 330, 367-369
  11. Dec 20, 2009 #10
    I found the data on the Lawrence-Raymo 2009 paper using the Uk37 isotope data and it seems to be calibrated okay to the global temperature estimates (might be high by 0.5C or so and the age estimates might be off a little, it doesn't quite match the Greenland ice core temps but close enough) ...


    What this data does let us do, however, is look at the last several Ice Ages in the Northern Hemisphere and compare that to the Milankovitch Cycles. [The Greenland ice core data doesn't really make it to the height of the last interglacial or we are not sure about the ages at the bottom of the core because there is so much ice distortion].

    Previously we only had the Antarctic ice core temperature data which seems to match the Northern summer solar insolation much better than it matches the Southern summer solar insolation data.

    So, as one can see, we still do not get a good match to the Northern summer solar insolation either (I used the data at 75N rather than 65N because I am more interested in the Albedo and sea ice impacts but 75N is almost identical to that at 65N).

    http://img63.imageshack.us/img63/609/last4iceagesnorthatlant.png [Broken]
    Last edited by a moderator: May 4, 2017
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook