Originally posted by NEOclassic
Hi Drag,
FYI: You have it a little backward because the
QM calculations are the result of the Pauli principle and
that principle was the result of the classic discovery, by dint
of the characteristic x-ray spectrum, that showed, experimentally,
the significant difference between k-a and k-b radiations.
Furthermore, the Pauli principle does not merely limit an orbital to two electrons but demands that they must differ in some trait other than the similarity of their charges. QM may very well assume that inertial spin – up vs. down – is a sufficient difference; however. because charge and mass are intrinsically coupled and further, because dipolar spin is markedly feebler than dipolar magnetism, the classic modeling prefers the strong attractiveness of the latter.
It is apparent to me that your reference to “clouds passing through the nucleus” suggests that drawings found in chemistry texts, that look like balloons and dumbbells, have been mistakenly interpreted by you as representing some kind of orbital property. In reality, those drawings represent the probability of the position/momentum paradox associated with single (usually orbitally uncoupled valence) electrons that are used to demonstrate concerning the uncertainty indicated by Heisenberg. [E.g. the nitrogen atom has three valence electrons and a drawing of that atom would show three independent orthogonally disposed dumbbells. When ammonia gas is formed, by three covalent bonding quantum orbitals, the so-called hydrogen bonds remain orthogonally disposed.]
Your audience is appreciated. Thanks, Only The Messenger