Effect of sample size when using periodic boundary conditions in 2D Ising model

DavidwN
Messages
1
Reaction score
0
Hi,

I'm currently using the Monte Carlo Metropolis algorithm to investigate the 2D Ising model.

I have an NxN lattice of points with periodic boundary conditions imposed. I was wondering if anyone could explain why the sharpness of the phase transition is affected by the size of N?
I.e. if N is small I get a slow transition and as N is increased, the transition approaches a step function.

I don't understand why this is as I am only considering nearest neighbour interactions and by using periodic boundary conditions surely I am effectively modelling an infinite lattice? So why does the size of the unit cell affect my results?

Thanks!
 
Physics news on Phys.org
You are experiencing critical opalescence. As you approach the phase transition, the correlation length increases exponentially. When this domain size reaches the size of your simulation, then the simulation breaks down, i.e. does not describe the physics correctly anymore.

http://en.wikipedia.org/wiki/Ising_critical_exponents

Try and find a definition of the correlation length and calculated that on your grid. Then compare the temperature dependence for different grid sizes to what one would expect for an infinite lattice.
 
From the BCS theory of superconductivity is well known that the superfluid density smoothly decreases with increasing temperature. Annihilated superfluid carriers become normal and lose their momenta on lattice atoms. So if we induce a persistent supercurrent in a ring below Tc and after that slowly increase the temperature, we must observe a decrease in the actual supercurrent, because the density of electron pairs and total supercurrent momentum decrease. However, this supercurrent...
Hi. I have got question as in title. How can idea of instantaneous dipole moment for atoms like, for example hydrogen be consistent with idea of orbitals? At my level of knowledge London dispersion forces are derived taking into account Bohr model of atom. But we know today that this model is not correct. If it would be correct I understand that at each time electron is at some point at radius at some angle and there is dipole moment at this time from nucleus to electron at orbit. But how...
Back
Top