BillKet
- 311
- 30
Thanks a lot! This really makes things a lot easier!amoforum said:I haven't gone through your derivation yet, but yes, there's a way easier method, which is how B&C derive all their matrix elements.
Look at equation 11.3. Its derivation is literally three steps, by invoking only two equations (5.123 first and 5.136 twice, once for ##F## and once for ##J##). The whole point of using Wigner symbols is to avoid the Clebsch-Gordan coefficient suffering.
By the way, almost every known case is in the B&C later chapters for you to look up. Every once in a while it's not. It happened to me actually, but I was able to derive what I needed using the process above.
I have a few questions about electronic and vibrational energy upon isotopic substitution. For now I am interested in the changes in mass, as I understand that there can also be changes in the size of the nucleus, too, that add to the isotope effects.
We obtain the electronic energy (here I am referring mainly to equation 7.183 in B&C) by solving the electrostatic SE with fixed nuclei. Once we obtain these energies, their value doesn't change anymore, regardless of the order of perturbation theory we go to in the effective Hamiltonian. The energy of the vibrational and spin-rotational will change, but this baseline energy of the electronic state is the same. When getting this energy, as far as I can tell, all we care about is the distance between the electrons and nuclei, as well as their charges. We also care about the electron mass, but not the nuclear one. This means that the electronic energy shouldn't change when doing an isotopic substitution. This is reflected in equation 7.199. However in equation 7.207 we have a dependence on the mass of the nuclei. From the paragraphs before, the main reason for this is the breaking of BO approximation. However, this breaking of BO approximation, and hence the mixing of electronic levels is reflected only in the effective Hamiltonian. As I mentioned above, the electronic energy should always be the same as its zero-th order value. Where does this mass dependence of the electronic energy ##Y_{00}## from equation 7.207 come from?
For vibrational energy, we have equation 7.184. I assume that the ##G^{(0)}_{\eta\nu}## term has the isotopic dependence given by 7.199. Do the corrections in 7.207 come from the other 2 terms: ##V^{ad}_{\eta\nu}## and ##V^{spin}_{\eta\nu}##? And if so, is this because these terms can also be expanded as in equation 7.180? For example, from ##V^{ad}_{\eta\nu}## we might get a term of the form ##x_{ad}(\nu+1/2)## so overall the first term in the vibrational expansion becomes ##(\omega_{\nu e}+x_{ad})(\nu+1/2)## which doesn't have the nice expansion in 7.199 anymore but the more complicated one in 7.207? Is this right? Also do you have any recommendations for readings that go into a bit more details about this isotopic substitution effects? Thank you!
). Alternatively, you can just try to directly compute the first and 2nd order perturbation terms of the toy Hamiltonian ##\left( \begin{array} aa(R) & c(R) \\ c(R) & d(R) \end{array} \right)##. To sum up, perturbation theory is just a shortcut to the terms in the taylor series when you don't have a closed formula for the spectrum to begin with.
.